Sugar Tech

, Volume 21, Issue 1, pp 153–161 | Cite as

Soil Load-Bearing Capacity and Development of Root System in Area Under Sugarcane with Traffic Control in Brazil

  • Allan Charlles Mendes de Sousa
  • Camila Viana Vieira FarhateEmail author
  • Zigomar Menezes de Souza
  • José Luiz Rodrigues Torres
  • Reginaldo Barboza da Silva
Research Article


Attempts to achieve reduced traffic area and favorable conditions for sugarcane field durability have been made increasingly necessary to use traffic control techniques in areas of sugarcane production. Our goal was to assess the benefits of traffic control for sugarcane cultivation areas by using a load-bearing capacity modeling and developing a root system. Our experiment was conducted in a sugarcane cultivation area in the region of Nova Europa, São Paulo, Brazil, by assessing the following treatments: T1 = sugarcane planted with row spacing of 1.50 m managed without autopilot; T2 = sugarcane planted with row spacing of 1.50 m managed with autopilot; T3 = sugarcane planted with row spacing of 1.5 × 0.90 m managed with autopilot. Soil sampling occurred at layers of 0.00–0.15 and 0.15–0.30 m in inter-row center and seedbed region. Our results reveal that the use of autopilot in the seedbed area is less influenced by machinery traffic, which guarantees preserved soil structure maintenance in the plant row region. Mathematical models of the inter-row center presented higher load-bearing capacity values than the seedbed region for all treatments, layers, and cycles assessed. Additionally, load-bearing capacity increases as the sugarcane cultivation cycles evolve, including higher soil load-bearing capacity at the first ratoon cane cycle in relation to the cane-plant cycle. Finally, the sugarcane crop root system has good distribution during the cane-plant cycle; however, the first ratoon cane cycle has a downward trend for the plant rows in the inter-row center because of intensive machine traffic.


Entisols Quartzipsamments Soil compaction Soil structure Modeling Soil physics Root growth 



The authors would like to thank the Research Foundation of São Paulo—FAPESP—for the financial support to this study (Grant Numbers: 2012/21094-0 and 2012/14412-6) as well as Itaquerê Group for having provided the study area.


  1. Ajayi, A.E., M.S. Dias Junior, N. Curi, C.F. Araújo Júnior, T.T.T. Souza, and A.V. Inda Junior. 2009. Strength attributes and compaction susceptibility of Brazilian Latosols. Soil and Tillage Research 105: 122–127. Scholar
  2. Assis, R.L., and K.P. Lanças. 2005. Evaluation of compressibility of a dystroferric Red Nitosol under no-tillage and conventional tillage systems and a native forest. Revista Brasileira de Ciência do Solo 29: 507–514. Scholar
  3. Bowles, J.E. 1986. Engineering properties of soils and their measurements. New York City: McGraw-Hill Companies.Google Scholar
  4. Braga, F.V.A., J.M. Reichert, M.I. Mentges, E.S. Vogelmann, and R.A.R. Padrón. 2015. Propriedades mecânicas e permeabilidade ao ar em topossequência argissolo-gleissolo: variação no perfil e efeito de compressão. Revista Brasileira de Ciência do Solo 39: 1025–1035. Scholar
  5. Cheong, L.R., K.F. Kwong, and C.C. Preez. 2009. Soil compaction under sugar cane (Saccharum hybrid sp.) cropping and mechanization in Mauritius. South African Journal of Plant and Soil 26: 199–205. Scholar
  6. Chopart, J.L., M.C.B. Azevedo, L. Le Mezo, and D. Marion. 2010. Sugarcane root system depth in three different countries. International Society of Sugar Cane Technologists 27: 1–8.Google Scholar
  7. Dias Júnior, M.S. Compression of three soils under long-term tillage and wheel traffic. 1994. 114 p. Tese (Tese de Doutorado)—Michigan State University, East Lansing, 1994.Google Scholar
  8. Dias Júnior, M.S., and F.J.A. Pierce. 1995. A simple procedure for estimating preconsolidation pressure from soil compression curve. Soil Technology 8: 139–151.CrossRefGoogle Scholar
  9. Dias Júnior, M.S., F.P. Leite, E. Lasmar Júnior, and C.F. Araújo Junior. 2005. Traffic ffects on the soil preconsolidation pressure due to eucalyptus harvest operations. Scientia Agricola 62: 248–255. Scholar
  10. Embrapa – Empresa Brasileira de Pesquisa Agropecuária. 2013. Sistema brasileiro de classificação de solos. Distrito Federal: Brasília.Google Scholar
  11. Ferreira, D.F. 2011. Sisvar: A computer statistical analysis system. Ciência e Agrotecnologia 35: 1039–1042. Scholar
  12. Gao, W., T. Ren, A.G. Bengough, L. Auneau, C.W. Watts, and W.R. Whalley. 2012. Predicting penetrometer resistance from the compression characteristic of soil. Soil Science Society of America Journal 76: 361–369. Scholar
  13. Holland, J.K., Erickson, B., and Widmar, D.A. 2013. Precision Agricultural services Dealership Survey Results. Sponsored by Croplife Magazine and Center for Food and Agricultural business. West Lafayette: Dept. of Agricultural Economics, Purdue University. Accessed 17 January 2016.
  14. Lima, R.P., M.M. Rolim, V.S. Oliveira, A.R. Silva, E.M.R. Pedrosa, and R.L.C. Ferreira. 2015. Load-bearing capacity and its relationship with the physical and mechanical attributes of cohesive soil. Journal of Terramechanics 58: 51–58. Scholar
  15. Medina, H.P. Constituição física. ln: Moniz, A.C. Elementos de Pedologia. Rio de Janeiro. Livros Técnicos e Científicos, 1975. p. 11–20.Google Scholar
  16. Oliveira, T.C.A., and J.P. Molin. 2011. Use of autopilots on citrus orchards establishment. Revista Engenharia Agrícola 31: 334–342. Scholar
  17. Pacheco, E.P., and J.R.B. Cantalice. 2011. Compressibility, penetration resistance and least limiting water range of a Yellow Ultisol under sugarcane in the Coastal Tablelands of Alagoas State. Revista Brasileira de Ciência do Solo 35: 403–415. Scholar
  18. Roque, A.A.O., Z.M. Souza, F.S. Araújo, and G.R.V. Silva. 2011. Soil physical attributes and least limiting water range of a Distrofic Red Latossol under agricultural traffic control. Ciência Rural 41: 1536–1542. Scholar
  19. Silva, A.J.N., and M.S. Cabeda. 2006. Compactação e compressibilidade do solo sob sistemas de manejo e níveis de umidade. Revista Brasileira de Ciência do Solo 30: 921–930. Scholar
  20. Silva, R.B., P. Iori, K.P. Lanças, and M.S. Dias Junior. 2010. Modelagem e determinação do estado crítico de consolidação a partir da relação massa e volume em solos canavieiros. Revista Brasileira de Ciências Agrárias 33: 376–3789.Google Scholar
  21. Silva, R.B., K.P. Lanças, E.E.V. Miranda, F.A.M. Silva, and F.H.R. Baio. 2009. Estimation and evaluation of dynamic properties as indicators of changes on soil structure in sugarcane fields of Sao Paulo State – Brazil. Soil and Tillage Research 103: 265–270. Scholar
  22. Silva, R.B., C.C. Lima, F.A.M. Silva, and P. Iori. 2014. Compressive behavior and structural assessment of soil under agroforestry systems and native forest in Southwest of Brazil. International Journal of Research in Chemistry and Environment 4: 168–176.Google Scholar
  23. Soil Survey Staff. 2014. Keys to soil taxonomy. Washington: USDA-Natural Resources Conservation Service.Google Scholar
  24. Sousa, A.C.M., E.E. Matsura, M.L.C. Elaiuy, L.N. Santos, C.R. Montes, and R.C.M. Pires. 2013. Root system distribution of sugarcane irrigated with domestic sewage effluent application by drip system. Revista Engenharia Agrícola 33: 647–657. Scholar
  25. Souza, G.S., Z.M. Souza, M. Cooper, and C.A. Tormena. 2015. Controlled traffic and soil physical quality of an Oxisol under sugarcane cultivation. Scientia Agricola 72: 270–277. Scholar
  26. Souza, G.S., Z.M. Souza, R.B. Silva, F.S. Araújo, and R.S. Barbosa. 2012. Compressibility do solo e root system da sugarcaneem manejo com e sem traffic control. Pesquisa Agropecuária Brasileira 47: 603–612. Scholar
  27. Taylor, D.W. 1948. Fundamentals of soil mechanics. New York: John Wiley.CrossRefGoogle Scholar
  28. Taylor, H.M. 1971. Effects of soil strength on seedling mergence, root growth and crop yield. In Compaction of agricultural soils, ed. K.K. Barnes, W.M. Carleton, H.M. Taylor, R.I. Throckmorton and G.E. Van Den Berg. St. Joseph: ASAE.Google Scholar
  29. Thebaldi, M.S., L.A. Alvarenga, M.F. Durães, C.S. Franco, and R.F.P.V. Marques. 2012. Modelo de capacidade de suporte de carga de dois solos e impacto por tráfego humano. Revista Agropecuária Técnica 3: 57–69. Scholar
  30. Vischi Filho, O.J., Z.M. Souza, R.B. Silva, R.B. Silva, C.C. Lima, D.M.G. Pereira, M.E. Lima, A.C.M. Sousa, and G.S.S. Souza. 2015. Capacidade de suporte de carga de Latossolo Vermelho cultivado com cana–de–açúcar e efeitos da mecanização no solo. Pesquisa Agropecuária Brasileira 50: 322–332. Scholar

Copyright information

© Society for Sugar Research & Promotion 2018

Authors and Affiliations

  1. 1.Federal Institute CatarinenseVideiraBrazil
  2. 2.School of Agricultural Engineering (Feagri)University of Campinas (Unicamp)CampinasBrazil
  3. 3.Federal Institute of Triângulo Mineiro Campus UberabaUberabaBrazil
  4. 4.São Paulo State University (UNESP)RegistroBrazil

Personalised recommendations