Advertisement

Sugar Tech

, Volume 21, Issue 1, pp 93–103 | Cite as

Structural Quality of an Oxisol Under Conventional Soil Tillage and Predecessor Crops in Sugarcane Rotation

  • Eber Augusto Ferreira Do PradoEmail author
  • Antonio Carlos Tadeu Vitorino
  • Rodrigo Arroyo Garcia
  • Cesar Jose da Silva
  • Munir Mauad
Research Article
  • 43 Downloads

Abstract

Alternating crops at the time of sugarcane rotation can improve soil physical quality, mainly through the action of the root system. The present study aimed to evaluate the impact of crops on the structural quality of a Latossolo Vermelho Distroférrico (Rhodic Hapludox) in a conventional soil tillage system under sugarcane rotation. The experimental design was a randomized block design, with five replicates. The five studied crops were Crotalaria juncea, Crotalaria ochroleuca, Helianthus annuus (sunflower), Glycine max (L.) Merrill (soybean), and Sorghum bicolor (L.) Moench, sorghum variety saccharine BRS 506, in addition to a fallow treatment. After the vegetative cycle of the crops, undisturbed soil samples were collected at two depths (0.15 and 0.25 m). The predecessor crops to the sugarcane plantation altered the physical water soil attributes at both the evaluated depths. The C. juncea crop increased the least limiting water range, but reduced the soil load-bearing capacity. The sorghum variety saccharine under conventional soil tillage exhibited the highest load-bearing capacities, but was associated with the lowest soil structural quality.

Keywords

Preconsolidation pressure Compressibility Soil compaction Modeling 

Notes

Acknowledgements

The authors would like to thank the Brazilian National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Level Personnel (Capes), and Foundation for Support to Education Development, Science, and Technology of the State of Mato Grosso do Sul (Fundect) for realization, development, and publication of this research.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alvares, C.A., J.L. Stape, P.C. Sentelhas, J.L.M. Gonçalves, and G. Sparovek. 2014. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22 (6): 711–728.CrossRefGoogle Scholar
  2. Blainski, E., A.C.A. Gonçalves, C.A. Tormena, M.V. Folegatti, and R.M.L. Guimarães. 2009. Intervalo hídrico ótimo num Nitossolo Vermelho distroférrico irrigado. Revista Brasileira de Ciência do Solo 33 (2): 273–281.  https://doi.org/10.1590/S0100-06832009000200005.CrossRefGoogle Scholar
  3. Blainski, E., C.A. Tormena, R.M.L. Guimarães, and M.R. Nanni. 2012. Qualidade física de um Latossolo sob plantio direto influenciada pela cobertura do solo. Revista Brasileira de Ciência do Solo 36 (1): 79–87.  https://doi.org/10.1590/S0100-06832012000100009.CrossRefGoogle Scholar
  4. Calonego, J.C., and C.A. Rosolem. 2011. Least limiting water range in soil under crop rotations and chiseling. Revista Brasileira de Ciência do Solo 35 (3): 759–771.  https://doi.org/10.1590/S0100-06832011000300012.CrossRefGoogle Scholar
  5. Dias Junior, M.S. 1994. Compression of three soils under longterm tillage and wheel traffic. Ph.D. dissertation, Michigan State University, East Lansing.Google Scholar
  6. Garbiate, M.V., A.C.T. Vitorino, E.A.F. Prado, M. Mauad, and D.M.P. Pellin. 2016. Hydrophysical quality of a latossolo and sugarcane yield in chisel plow-based sugarcane ratoon management. Revista Brasileira de Ciência do Solo 40 (1): 1–10.  https://doi.org/10.1590/18069657rbcs20150411.Google Scholar
  7. Garcia, R.A. 2010. Rotação de culturas e propriedades físicas e matéria orgânica de um latossolo. Ph.D. dissertation, Universidade Estadual Paulista, Botucatu.Google Scholar
  8. Genaro, L.A., Z.M. Souza, L.F.S. Silva, M. Cooper, and M.C.C. Campos. 2015. Estrutura do solo sob feijão irrigado e diferentes manejos do solo. Revista Brasileira de Ciência do Solo 39 (2): 608–614.CrossRefGoogle Scholar
  9. Gontijo, I., M.S. Dias Junior, M.S. Oliveira, C.F. Araujo Junior, B.S. Pires, and C.A. Oliveira. 2007. Planejamento amostral da pressão de preconsolidação de um Latossolo Vermelho distroférrico. Revista Brasileira de Ciência do Solo 31 (6): 1245–1254.CrossRefGoogle Scholar
  10. Gubiani, P.I., J.M. Reichert, and D.J. Reinert. 2013. Indicadores hídrico-mecânicos de compactação do solo e crescimento de plantas. Revista Brasileira de Ciência do Solo 37 (1): 1–10.CrossRefGoogle Scholar
  11. Imhoff, S., A.P. Silva, M.S. Dias Junior, and C.A. Tormena. 2001. Quantificação de pressões críticas para o crescimento das plantas. Revista Brasileira de Ciência do Solo 25 (1): 11–18.  https://doi.org/10.1590/s0100-06832001000100002.CrossRefGoogle Scholar
  12. Imhoff, S., S.A. Pires, P.J. Ghiberto, C.A. Tormena, M.A. Pilatti, and P.L. Libardi. 2016. Physical quality indicators and mechanical behavior of agricultural soils of argentina. PLoS ONE 11 (4): 1–10.  https://doi.org/10.1371/journal.pone.0153827.CrossRefGoogle Scholar
  13. Lima, V.M.P., G.C. Oliveira, M.E. Serafim, N. Curi, and A.R. Evangelista. 2012. Intervalo hídrico ótimo como indicador de melhoria da qualidade estrutural de Latossolo degradado. Revista Brasileira de Ciência do Solo 36 (1): 71–78.  https://doi.org/10.1590/S0100-06832012000100008.CrossRefGoogle Scholar
  14. Mishra, A.K., P. Aggarwal, R. Bhattacharyya, T.K. Das, and A.R. Msharma. 2015. Least limiting water range for two conservation agriculture cropping systems in India. Soil Tillage Research 150 (1): 43–56.  https://doi.org/10.1016/j.still.2015.01.003.CrossRefGoogle Scholar
  15. Oliveira, G.C., M.S. Dias Junior, D.V.S. Resck, and N. Curi. 2003. Alterações estruturais e comportamento compressivo de um Latossolo vermelho do Cerrado sob diferentes sistemas de manejo por 20 anos. Pesquisa Agropecuária Brasileira 38 (2): 291–299.  https://doi.org/10.1590/S0100-204X2003000200017.CrossRefGoogle Scholar
  16. Pereira, A.H.F., A.C.T. Vitorino, E.A.F. Prado, A.C. Bergamin, M. Mauad, and H.P. Arantes. 2015. Least limiting water range and load bearing capacity of soil under types of tractor-trailers for mechanical harvesting of green sugarcane. Revista Brasileira de Ciência do Solo 39 (6): 1603–1610.  https://doi.org/10.1590/01000683rbcs20140561.CrossRefGoogle Scholar
  17. Santos, H.G., P.K.T. Jacomine, L.H.C. Anjos, V.A. Oliveira, J.F. Lubreras, M.R. Coelho, J.A. Almeida, T.J.F. Cunha, and J.B. Oliveira. 2013. Sistema brasileiro de classificação de solos. Brasília: Embrapa Informação Tecnológica.Google Scholar
  18. Silva, A.P., B.D. Kay, and E. Perfect. 1994. Characterization of the least limiting water range of soils. Soil Science Society America Journal 58 (6): 1775–1781.  https://doi.org/10.2136/sssaj1994.03615995005800060028x.CrossRefGoogle Scholar
  19. Snedecor, G.W., and W.G. Cochran. 1989. Statistical methods, 8th ed. Ames: Iowa State University Press.Google Scholar
  20. Soil Survey Staff. 2014. Keys to soil taxonomy, 12th ed. Washington, DC: USDA-Natural Resources Conservation Service.Google Scholar
  21. Teixeira, P.C., G.K. Donagemma, A. Fontana, and W.G. Teixeira. 2017. Manual de métodos de análise de solos. Brasília: Embrapa.Google Scholar
  22. Tormena, C.A., M.A. Araújo, J. Fidalski, and J.M. Costa. 2007. Variação temporal do intervalo hídrico ótimo de um Latossolo Vermelho Distroférrico sob sistemas de plantio direto. Revista Brasileira de Ciência do Solo 31 (2): 211–219.  https://doi.org/10.1590/S0100-06832007000200003.CrossRefGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 2018

Authors and Affiliations

  1. 1.Faculdade de Ciências AgráriasUniversidade Federal da Grande DouradosDouradosBrazil
  2. 2.Empresa Brasileira de Pesquisa AgropecuáriaEmbrapa Agropecuária OesteDouradosBrazil

Personalised recommendations