Advertisement

Sugar Tech

, Volume 21, Issue 1, pp 29–37 | Cite as

Dimensioning the Impact of Irrigation on Sugarcane Yield in Brazil

  • Henrique Boriolo DiasEmail author
  • Paulo Cesar Sentelhas
Research Article
  • 180 Downloads

Abstract

Water deficit is one of the main causes of sugarcane yield limitation around the world. Sugarcane simulation models can be used to evaluate the impact of irrigation on yield where water deficit causes important losses. The aim of this study was to dimension the potential of irrigation on sugarcane yield in different Brazilian regions, by comparing yields simulated by a calibrated FAO-AZM model under rainfed and irrigated conditions, considering different levels of crop water supply. Simulations were run for 12-month plant cane yield planted every month along the year. Three different soil types with low, medium and high soil water holding capacities were considered for 29 locations in Brazil, considering a 30-year weather data series. Irrigation was applied to cover 20, 40, 60, 80 and 100% of the crop water deficit, with the highest level corresponding to full irrigation to obtain potential yield. The results showed that yield increases depend on the interaction between climate type, weather conditions, soil physical properties, planting date and level of irrigation. The soil with low water holding capacity was the one with the largest response to irrigation. On the coast of Northeastern Brazil, sugarcane planted between March and June was those which were more responsive to irrigation. On the other hand, in the producing regions in the interior of the country, the planting dates with higher responses to irrigation were between October and January. This study proved that irrigation is an important strategy to improve sugarcane yield even in the regions where irrigation is currently not recommended.

Keywords

Saccharum spp. Crop simulation models FAO Agro-ecological Zone model Water deficit Deficit irrigation Full irrigation 

Notes

Acknowledgements

We are thankful to the São Paulo Research Foundation (FAPESP) for the Master scholarship of first author (Grant#2014/05173-3). The second author is a CNPq research fellow, level 1B.

Authors’ contributions

HBD and PCS were both responsible for designing the study, preparing the dataset, analyzing the data, discussing the results and writing the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adami, M., B.F.T. Rudorff, R.M. Freitas, D.A. Aguiar, L.M. Sugawara, and M.P. Mello. 2012. Remote sensing time series to evaluate direct land use change of recent expanded sugarcane crop in Brazil. Sustainability 4: 574–585.  https://doi.org/10.3390/su4040574.CrossRefGoogle Scholar
  2. Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper No. 56, vol. 300. Rome: FAO.Google Scholar
  3. Alvares, C.A., J.L. Stape, P.C. Sentelhas, J.L.M. de Gonçalves, and G. Sparovek. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711–728.  https://doi.org/10.1127/0941-2948/2013/0507.CrossRefGoogle Scholar
  4. Araújo, R., J. Alves Junior, D. Casaroli, and A.W.P. Evangelista. 2016. Variation in the sugar yield in response to drying-off of sugarcane before harvest and the occurrence of low air temperatures. Bragantia 75: 118–127.  https://doi.org/10.1590/1678-4499.170.CrossRefGoogle Scholar
  5. Basnayake, J., P.A. Jackson, N.G. Inman-Bamber, and P. Lakshmanan. 2012. Sugarcane for water-limited environments. Genetic variation in cane yield and sugar content in response to water stress. Journal of Experimental Botany 63: 6023–6033.  https://doi.org/10.1093/jxb/ers251.CrossRefGoogle Scholar
  6. Boote, K.J., J.W. Jones, and N.B. Pickering. 1996. Potential uses and limitations of crop models. Agronomy Journal 88: 704–706.CrossRefGoogle Scholar
  7. BRASIL. 1981. Projeto RADAMBRASIL. Ministério das Minas e Energia, Secretaria Geral, Rio de Janeiro, Brazil.Google Scholar
  8. Campos, P.F., J. Alves Júnior, D. Casaroli, P.R. Fontoura, and A.W.P. Evangelista. 2014. Variedades de cana-de-açúcar submetidas à irrigação suplementar no cerrado goiano. Engenharia Agrícola 34: 1139–1149.  https://doi.org/10.1590/S0100-69162014000600010.CrossRefGoogle Scholar
  9. Carr, M.K.V., and J.W. Knox. 2011. The water relations and irrigation requirements of sugar cane (Saccharum officinarum): A review. Experimental Agriculture 47: 1–25.  https://doi.org/10.1017/S0014479710000645.CrossRefGoogle Scholar
  10. Costa, L.G., F.R. Marin, D.S.P. Nassif, H.M.S. Pinto, and M.L.C.R. Lopes-Assad. 2014. Simulação do efeito do manejo da palha e do nitrogênio na produtividade da cana-de-açúcar. Revista Brasileira de Engenharia Agrícola e Ambiental 18: 469–474.  https://doi.org/10.1590/S1415-43662014000500001.CrossRefGoogle Scholar
  11. Dalri, A.B., and R.L. Cruz. 2008. Efeito da frequência de irrigação subsuperficial por gotejamento no desenvolvimento da cana-de-açúcar (Saccharum spp.). Irriga 7: 29–34.CrossRefGoogle Scholar
  12. de Andrade Júnior, A.S., E.A. Bastos, V.Q. Ribeiro, J.A.L. Duarte, D.L. Braga, and D.H. Noleto. 2012. Níveis de água, nitrogênio e potássio por gotejamento subsuperficial em cana-de-açúcar. Pesquisa Agropecuaria Brasileira 47: 76–84.  https://doi.org/10.1590/S0100-204X2012000100011.CrossRefGoogle Scholar
  13. de Oliveira, F.M., I. Aspiazú, and M.K. Kondo. 2011. Crescimento e produção de variedades de cana-de-açúcar influenciadas por diferentes adubações e estresse hídrico. Revista Trópica 5: 56–67.Google Scholar
  14. Dias, H.B., and P.C. Sentelhas. 2017. Evaluation of three sugarcane simulation models and their ensemble for yield estimation in commercially managed fields. Field Crops Research 213: 174–185.  https://doi.org/10.1016/j.fcr.2017.07.022.CrossRefGoogle Scholar
  15. Donzelli, J.L., and V.M. Costa. 2010. Workshop sobre o Impacto da produção de etanol nos recursos hídricos nas regiões de expansão. Campinas: Brazilian Bioethanol Science and Technology Laboratory, Brazilian Center for Research in Energy and Materials.Google Scholar
  16. Doorenbos, J., and A.H. Kassam. 1979. Yield response to water, ed. J. Doorenbos, and A.M. Kassam. Rome: Irrigation and Drainage Paper No. 33, FAO.Google Scholar
  17. dos Vianna, M.S., and P.C. Sentelhas. 2016. Performance of DSSAT CSM-CANEGRO under operational conditions and its use in determining the “saving irrigation” impact on sugarcane crop. Sugar Tech 18: 75–86.  https://doi.org/10.1007/s12355-015-0367-0.CrossRefGoogle Scholar
  18. Inman-Bamber, N.G., and D.M. Smith. 2005. Water relations in sugarcane and response to water deficits. Field Crops Research 92: 185–202.  https://doi.org/10.1016/j.fcr.2005.01.023.CrossRefGoogle Scholar
  19. Inman-Bamber, N.G., P. Lakshmanan, and S. Park. 2012. Sugarcane for water-limited environments: Theoretical assessment of suitable traits. Field Crops Research 134: 95–104.  https://doi.org/10.1016/j.fcr.2012.05.004.CrossRefGoogle Scholar
  20. Kassam, A.H. 1977. Net biomass production and yield of crops, ed. A.H. Kassam. Rome: FAO.Google Scholar
  21. Laclau, P.B., and J.P. Laclau. 2009. Growth of the whole root system for a plant crop of sugarcane under rainfed and irrigated environments in Brazil. Field Crops Research 114: 351–360.  https://doi.org/10.1016/j.fcr.2009.09.004.CrossRefGoogle Scholar
  22. Leal, D.F.P. 2016. Parametrização do modelo CANEGRO (DSSAT) e caracterização biométrica de oito variedades de cana-de-açúcar irrigadas por gotejamento. Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, Brazil.Google Scholar
  23. Marin, F.R., James W. Jones, F. Royce, C. Suguitani, J.L. Donzeli, W.J. Pallone Filho, and D.S.P. Nassif. 2011. Parameterization and evaluation of predictions of DSSAT/CANEGRO for Brazilian sugarcane. Agronomy Journal 103: 304–315.  https://doi.org/10.2134/agronj2010.0302.CrossRefGoogle Scholar
  24. Marin, F.R., P.J. Thorburn, D.S.P. Nassif, and L.G. Costa. 2015. Sugarcane model intercomparison: Structural differences and uncertainties under current and potential future climates. Environmental Modelling and Software 72: 372–386.  https://doi.org/10.1016/j.envsoft.2015.02.019.CrossRefGoogle Scholar
  25. Monteiro, L.A., and P.C. Sentelhas. 2014. Potential and actual sugarcane yields in Southern Brazil as a function of climate conditions and crop management. Sugar Tech 16: 264–276.  https://doi.org/10.1007/s12355-013-0275-0.CrossRefGoogle Scholar
  26. Nassif, D.S.P., F.R. Marin, J.W. Pallone Filho, R.S. Resende, and G.Q. Pellegrino. 2012. Parametrização e avaliação do modelo DSSAT/Canegro para variedades brasileiras de cana-de-açúcar. Pesquisa Agropecuaria Brasileira 47: 311–318.CrossRefGoogle Scholar
  27. Priestley, C.H.B., and R.J. Taylor. 1972. On the assessment of surface heat flux and evaporation, using large scale parameters. Monthly Weather Review 100: 81–92.CrossRefGoogle Scholar
  28. Robertson, M.J., N.G. Inman-Bamber, R.C. Muchow, and A.W. Wood. 1999. Physiology and productivity of sugarcane with early and mid-season water deficit. Field Crops Research 64: 211–227.  https://doi.org/10.1016/S0378-4290(99)00042-8.CrossRefGoogle Scholar
  29. Rudorff, B.F.T., D.A. de Aguiar, W.F. da Silva, L.M. Sugawara, M. Adami, and M.A. Moreira. 2010. Studies on the rapid expansion of sugarcane for ethanol production in São Paulo state (Brazil) using Landsat data. Remote Sensing 2: 1057–1076.  https://doi.org/10.3390/rs2041057.CrossRefGoogle Scholar
  30. Scarpare, F.V. 2011. Simulação do crescimento da cana-de-açúcar pelo modelo agrohidrológico SWAP/WOFOST. Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, Brazil.Google Scholar
  31. Suguitani, C. 2006. Entendendo o crescimento e produção da cana de açúcar: Avaliação do modelo Mosicas. Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, Brazil.Google Scholar
  32. Thornthwaite, C.W., and J.R. Mather. 1955. The water balance. In Publications in climatology, vol. 8, ed. C.W. Thornthwaite, and J.R. Mather. Princeton, NJ: Drexel Institute of Technology.Google Scholar

Copyright information

© Society for Sugar Research & Promotion 2018

Authors and Affiliations

  1. 1.“Luiz de Queiroz” College of AgricultureUniversity of São PauloPiracicabaBrazil

Personalised recommendations