Advertisement

Sugar Tech

, Volume 19, Issue 3, pp 317–325 | Cite as

Optimization of Hydrolysis Process to Obtain Fermentable Sugars from Sweet Sorghum Bagasse Using a Box–Behnken Design

  • G. Partida-Sedas
  • N. Montes-García
  • O. Carvajal-Zarrabal
  • L. López-Zamora
  • J. Gómez-Rodríguez
  • M. G. Aguilar-UscangaEmail author
Research Article

Abstract

Sweet sorghum (Sorghum bicolor (L.) Moench) bagasse is a lignocellulosic material consisting mainly of hemicellulose and cellulose, a potential source of fermentable sugars. The present study aimed to optimize the hydrolysis of sweet sorghum bagasse to obtain the highest concentrations of xylose and glucose with the minimum amount of inhibitor compounds. Seven varieties of sweet sorghum bagasse were used for the hydrolysis experiment, carried out in three stages with a 23 Box–Behnken factorial design; the critical factors selected for both stages were H2SO4 and H2O2 concentrations, time and liquid–solid ratio (LSR). The alkaline hydrolysis was carried out with a subsequent enzymatic hydrolysis using 0.4 mL cellulose and 0.5 mL beta-glucosidase. The optimum conditions for acid hydrolysis were H2SO4 (1.375 % w/v), time (36 min) and LSR (4.9:1 v/w of bagasse) resulting in values of 11.55 g/L glucose and 41.27 g/L xylose, respectively; for alkaline hydrolysis H2O2 (4.5 % w/v), time (45 h) and LSR (16:1 v/w of bagasse) were the optimum values. Under these conditions, 65.96 g/L glucose concentration was obtained. Validation of the model indicated no difference between predicted and observed values in the optimization of the hydrolysis process.

Keywords

Sorghum bicolor (L.) Moench Glucose Xylose Hydrolysis Optimization 

Notes

Acknowledgments

The authors acknowledge the economic support from the National Council of Science and Technology, Mexico (CONACyT-SAGARPA, Project 173411) and the critical reading of Patricia Margaret Hayward-Jones, M.Sc. and Dulce María Barradas-Dermitz, M.Sc.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aita, G.A. and M. Kim. 2010. Pretreatment technologies for the conversion of lignocellulosic materials to bioethanol sustainability of the sugar and sugar ethanol industries. ACS Symposium Series, 117–145. Washington, DC: American Chemical Society.Google Scholar
  2. Almodares, A., and M. Hadi. 2009. Production of bioethanol from sweet sorghum: A review. African Journal of Agricultural Research 4(9): 772–780.Google Scholar
  3. Alvira, P., E. Tomas-Pejo, M. Ballesteros, and M.J. Negro. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology 101: 4851–4861.CrossRefPubMedGoogle Scholar
  4. Barreiro, M. 1997. El sorgo mexicano: entre la autosuficiencia y la dependencia externa. Apoyos y Servicios a la Comercialización Agropecuaria (ASERCA). Revista Claridades Agropecuarias 46: 3–4.Google Scholar
  5. Castañón, J.F., J.A. Portilla, B.R. Aguilar, and M.G. Aguilar. 2015. Effects of oxygen and nutrients on xylitol and ethanol production in sugar cane bagasse hydrolyzates. Food Sciences Biotechnology 24(4): 1381–1839.CrossRefGoogle Scholar
  6. Chen, C. 2011. Alternative pretreatment of sorghum bagasse for bio-ethanol production. Thesis Master of Science. Faculty of the Louisiana State University and Agricultural and Mechanical College: 3.Google Scholar
  7. Chen, Y., R. Sharma-Shivappa, D. Keshwani, and C. Chen. 2007. Potential of agricultural residues and hay for bioethanol production. Applied Biochemistry and Biotechnology 142: 276–290.CrossRefPubMedGoogle Scholar
  8. Domínguez, C.X. 2013. Optimización del pretratamiento (ácido/alcalino) y la determinación de la influencia del tween 80 en la hidrolisis enzimática del olote. Tesis de Maestría. Instituto Tecnológico de Orizaba.Google Scholar
  9. Domínguez, M., A. Álvarez, T. Castrejón, M. Granados, F. Hernández, V. Alcalá, and C. Tapia. 2011. Estudio de la cinética de la hidrólisis ácida del bagazo de caña de azúcar sin pretratamiento para la obtención de azúcares reductores. Revista Iberoamericana de Polímeros 12(3): 153–159.Google Scholar
  10. Fazzio, A., D. Cazzolino, W. Ibáñez and E. Fernández. 2007. Sorgo: Destino forrajero. Serie Técnica 127. Unidad de Agronegocios y Difusión del Instituto Nacional de Investigación Agropecuaria, Uruguay.Google Scholar
  11. Galbe, M., and G. Zacchi. 2007. Pretreatment of lignocellulosic materials for efficient bioethanol production. Advances in Biochemical Engineering/Biotechnology 108: 41–65.CrossRefPubMedGoogle Scholar
  12. Hahn-Hägerdal, B., M. Galbe, M.F. Gorwa-Grauslund, G. Liden, and G. Zacchi. 2006. Bio-ethanol—The fuel of tomorrow from the residues of today. Trends in Biotechnology 24: 549–556.CrossRefPubMedGoogle Scholar
  13. Infoagro. 2012. http://www.infoagro.com/herbaceos/forrajes/sorgo.htm. 6 de Noviembre de 2012.
  14. Kaur, P., S.K. Uppal, C. Dhir, P. Sharma, and R. Kaur. 2015. Comparative study of chemical pretreatments and acid saccharification of bagasse of sugar crops for ethanol production. Sugar Tech 17(4): 412–417.CrossRefGoogle Scholar
  15. Keshwani, D.R., and J.J. Cheng. 2009. Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production. Biotechnology Progress 26: 644–652.CrossRefGoogle Scholar
  16. Khuri, A.I., and J.A. Cornell. 1987. Response surfaces: Design and analysis. New York: Marcel Dekker.Google Scholar
  17. Kumar, P., D.M. Barrett, M.J. Delwiche, and P. Stroeve. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research 48: 3713–3729.CrossRefGoogle Scholar
  18. Mamma, D., P. Christokopoulous, D. Koullas, D. Kekos, B. Macris, and E. Koukios. 1995. An alternative approach to bioconversion of sweet sorghum carbohydrates to ethanol. Biomass and Bioenergy 8(2): 99–103.CrossRefGoogle Scholar
  19. Marx, S., B. Ndaba, I. Chiyanzu, and C. Schabort. 2013. Fuel ethanol production from sweet sorghum bagasse using microwave irradiation. Biomass and Bioenergy 65(2014): 145–150.Google Scholar
  20. Mesa, L., E. González, I. Romero, E. Ruiz, C. Cara, and E. Castro. 2001. Comparison of process configurations for ethanol production from two-step pretreated sugarcane bagasse. Chemical Engineering Journal 175: 185–191.CrossRefGoogle Scholar
  21. Mikán, V., and D. Castellanos. 2004. Screening para el aislamiento y caracterización de microorganismos y enzimas potencialmente útiles para la degradación de celulosas y hemicelulosas. Revista Colombiana de Biotecnología VI 1: 58–71.Google Scholar
  22. Montgomery, D.C. 2005. Design and analysis of experiments, 6th ed. New York: Wiley.Google Scholar
  23. Nápoles, A., Y. Ortiz, M. Viñals, E. Manganelly, and E. Acosta. 2006. Purificación de hidrolizado de bagazo de caña de azúcar con carbón activado y resinas de intercambio iónico. Ciencia y Tecnología Alimentaria 5(2): 124–128.CrossRefGoogle Scholar
  24. Nochebuena, L.E. 2013. Estudio del efecto del tratamiento oxidativo y del Tween 80 sobre la hidrólisis enzimática del bagazo de caña de azúcar. Tesis de Maestría. Instituto Tecnológico de Orizaba.Google Scholar
  25. Pernalet, Z., F. Piña, M. Suárez, A. Ferrer, and C. Aiello. 2008. Fraccionamiento del bagazo de caña de azúcar mediante tratamiento amoniacal: efecto de la humedad del bagazo y la carga de amoníaco. Bioagro 20(1): 3–10.Google Scholar
  26. Soto, L.C. 2011. Diseño de una planta productora de bioetanol, a partir de sorgo dulce (Sorghum vulgare) para la implementación en el Estado de Guanajuato. Tesis Profesional. Instituto Tecnológico de Veracruz.Google Scholar
  27. Van, S.P.J., J.B. Robertson, and B.A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 3583–3597.CrossRefGoogle Scholar
  28. Varela, R. 2007. Estudio del Sorgo Dulce como alternativa de cultivo energético en la producción de energías alternas renovables. Colombia: CERTA Research & Consulting, Inc.Google Scholar
  29. Vázquez, H., and O. Dacosta. 2007. Fermentación alcohólica: Una opción para la producción de energía renovable a partir de desechos agrícolas. Ingeniería, Investigación y Tecnología VIII(4): 249–259.Google Scholar
  30. Vogel, K.P., J.F. Pedersen, S.D. Masterson, and J.J. Toy. 1999. Evaluation of a filter bag system for NDF, ADF, and IVDMD forage analysis. Crop Science 39: 276–279.CrossRefGoogle Scholar
  31. Worly, J., D. Vaugha, and J. Cundiff. 1992. Energy analysis of ethanol production from sweet sorghum. Bioresource Technology 40: 263–273.CrossRefGoogle Scholar
  32. Ying, G., H. Shan-ying, L. You-run, C. Ding-ying, Z. Bing, and K. Smith. 2010. Optimization and analysis of a bioethanol agro-industrial system from sweet sorghum. Renewable Energy 35: 2902.CrossRefGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 2016

Authors and Affiliations

  • G. Partida-Sedas
    • 1
  • N. Montes-García
    • 2
  • O. Carvajal-Zarrabal
    • 3
  • L. López-Zamora
    • 4
  • J. Gómez-Rodríguez
    • 1
  • M. G. Aguilar-Uscanga
    • 1
    Email author
  1. 1.Departamento de Ingeniería Química y Bioquímica-Unidad de Investigación y Desarrollo en Alimentos (UNIDA)Instituto Tecnológico de Veracruz-UNIDAVeracruzMexico
  2. 2.INIFAPRío BravoMexico
  3. 3.Universidad Veracuzana Campus Veracruz-Boca del RíoVeracruzMexico
  4. 4.División de Estudios de Posgrado e InvestigaciónInstituto Tecnológico de OrizabaOrizabaMexico

Personalised recommendations