Sugar Tech

, Volume 19, Issue 1, pp 17–25 | Cite as

A Novel Non-specific Lipid Transfer Protein Gene from Sugarcane (NsLTPs), Obviously Responded to Abiotic Stresses and Signaling Molecules of SA and MeJA

  • Yun Chen
  • Jingjing Ma
  • Xu Zhang
  • Yuting Yang
  • Dinggang Zhou
  • Qing Yu
  • Youxiong Que
  • Liping Xu
  • Jinlong Guo
Research Article


Non-specific lipid transfer proteins (NsLTPs) are soluble, small, basic proteins in plant, which have been reported to be involved in plant physiological functions such as the catalyzing transfer of phospholipids and play an important role in plant defense and stress responses. In this study, a member of NsLTP family gene (ScNsLTP, Acc. No. KR259657) was isolated from a full-length cDNA library of sugarcane stalk. The cDNA of ScNsLTP was 671 bp long and contained a 312 bp open reading frame (ORF), which can encode a protein of 103 amino acid residues with molecular weight of 10.66 kDa. The ScNsLTP transcript levels in sugarcane seedlings decreased in response to SA, whereas it increased under MeJA treatment, suggesting an antagonistic regulatory mechanism between the signaling molecules of SA and MeJA. The transcript levels of ScNsLTP were obviously up-regulated under chilling and PEG stresses, implying that the ScNsLTP gene was involved in response to abiotic stresses and playing a positive role in adaption to low temperature and drought stresses. These results provide important information for further functional studies of plant NsLTPs gene.


Sugarcane (Saccharum hybrid complex) Lipid transfer proteins (LTPs) Gene expression qRT-PCR 



This study was funded by the National Natural Science Foundation of China (Grant Numbers 31271782, 31340060) and the Foundation for Development of Science and Technology from Fujian Agriculture and Forestry University (2016), China.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12355_2016_431_MOESM1_ESM.gif (9 kb)
Supplementary material 1 (GIF 8 kb)
12355_2016_431_MOESM2_ESM.png (13 kb)
Supplementary material 2 (PNG 12 kb)
12355_2016_431_MOESM3_ESM.bmp (943 kb)
Supplementary material 3 (BMP 943 kb)
12355_2016_431_MOESM4_ESM.docx (14 kb)
Supplementary material 4 (DOCX 13 kb)


  1. Arnold, K., L. Bordoli, J. Kopp, and T. Schwede. 2006. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics 22: 195–201.CrossRefPubMedGoogle Scholar
  2. Arondel, V., C. Vergnolle, C. Cantrel, and J.C. Kader. 2000. Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana. Plant Science 157: 1–12.CrossRefGoogle Scholar
  3. Asero, R., G. Mistrello, D. Roncarolo, S.C. de Vries, M.F. Gautier, C.L. Ciurana, E. Verbeek, T. Mohammadi, V. Knul-Brettlova, J.H. Akkerdaas, L. Bulder, R.C. Aalberse, and R. van Ree. 2000. Lipid transfer protein: a pan-allergen in plant-derived foods that is highly resistant to pepsin digestion. International Archives of Allergy and Immunology 122: 20–32.CrossRefPubMedGoogle Scholar
  4. Boutrot, F., N. Chantret, and M.F. Gautier. 2008. Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics 9: 86.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boutrot, F., A. Guirao, R. Alary, P. Joudrier, and M.F. Gautier. 2005. Wheat non-specfic lipid transfer protein genes display a complex pattern of expression in developing seeds. Biochimica et Biophysica Acta 1730: 114–125.CrossRefPubMedGoogle Scholar
  6. Boutrot, F., D. Meynard, E. Guiderdoni, P. Joudrier, and M.F. Gautier. 2007. The Triticum aestivum non-specific lipid transfer protein (TaLtp) gene family: comparative promoter activity of six TaLtp genes in transgenic rice. Planta 225: 843–862.CrossRefPubMedGoogle Scholar
  7. Carvalho, A.O., and V.M. Gomes. 2007. Role of plant lipid transfer proteins in plant cell physiology-a concise review. Peptides 28: 1144–1153.CrossRefGoogle Scholar
  8. Choi, Y.E., S. Lim, H.J. Kim, J.Y. Han, M.H. Lee, Y. Yang, J.A. Kim, and Y.S. Kim. 2012. Tobacco NtLTP1, a glandular-specific lipid transfer protein, is required for lipid secretion from glandular trichomes. Plant Journal 70: 480–491.CrossRefPubMedGoogle Scholar
  9. Damaj, M.B., S.P. Kumpatla, C. Emani, P.D. Beremand, A.S. Reddy, K.S. Rathore, M.T. Buenrostro-Nava, I.S. Curtis, T.L. Thomas, and T.E. Mirkov. 2010. Sugarcane DIRIGENT and O-methyltransferase promoters confer stem-regulated gene expression in diverse monocots. Planta 231: 1439–1458.CrossRefPubMedGoogle Scholar
  10. Edstam, M.M., L. Viitanen, T.A. Salminen, and J. Edqvist. 2011. Evolutionary history of the non-specific lipid transfer proteins. Molecular Plant 4: 947–964.CrossRefPubMedGoogle Scholar
  11. Garcia-Olmedo, F., A. Molina, A. Segura, and M. Moreno. 1995. The defensive role of nonspecific lipid-transfer proteins in plants. Trends in Microbiology 3: 72–74.CrossRefPubMedGoogle Scholar
  12. Guan, M.X., R.H. Chai, X. Kong, and X.M. Liu. 2013. Isolation and characterization of a lipid transfer protein gene (BplLTP1) from Betula platyphylla. Plant Molecular Biology Reporter 31: 991–1001.CrossRefGoogle Scholar
  13. Jang, C.S., J.Y. Kim, J.W. Haam, M.S. Lee, D.S. Kim, Y.W. Li, and Y.W. Seo. 2003. Expressed sequence tags from a wheat-rye translocation line (2BS/2RL) infested by larvae of hessian fly [Mayetiola destructor (Say)]. Plant Cell Reports 22: 150–158.CrossRefPubMedGoogle Scholar
  14. Jin, D.W., J. Yang, F. Li, R. Wang, Z.P. Luo, M.Z. Wu, P. Wei, M.S. Huo, and F.C. Lin. 2015. Cloning and expression analysis of non-specific lipid transfer protein gene from Nicotiana tabacum. Tobacco Science and Technology 48: 12–20.Google Scholar
  15. Jung, H.W., C.W. Lim, and B.K. Hwang. 2006. Isolation and functional analysis of a pepper lipid transfer protein III (CALTPIII) gene promoter during signaling to pathogen, abiotic and environmental stresses. Plant Science 170: 258–266.CrossRefGoogle Scholar
  16. Kachroo, P., J. Shanklin, J. Shah, E.J. Whittle, and D.F. Klessig. 2001. A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proceedings of the National Academy of Sciences of the United States of America 98: 9448–9453.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kader, J.C. 1996. Lipid-transfer proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47: 627–654.CrossRefPubMedGoogle Scholar
  18. Lascombe, M.B., B. Bakan, N. Buhot, D. Marion, J.P. Blein, V. Larue, C. Lamb, and T. Prangé. 2008. The structure of defective in induced resistance protein of Arabidopsis thaliana, DIR1, reveals a new type of lipid transfer protein. Protein Science 17: 1522–1530.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Li, D.M., C. Staehelin, W.T. Wang, and S.L. Peng. 2010. Molecular cloning and characterization of a chitinase-homologous gene from Mikania micrantha infected by Cuscuta campestris. Plant Molecular Biology Reporter 28: 90–101.CrossRefGoogle Scholar
  20. Liu, M., H. Sheng, W.P. Hua, J. Chu, and Z.Z. Wang. 2011. Cloning and expression analysis of a non-specific lipid transfer protein gene (SmLTP1) from salvia miltiorrhiza bunge. Plant Physiology Journal 47: 63–68.Google Scholar
  21. Liu, Q., J. Ma, Q.L. Zhu, G.W. Yu, Q. Zhang, S.Z. Sui, and M.Y. Li. 2009. Expression analysis of three nonspecific lipid transfer protein (nsLTP)genes in response to abiotic stresses in Chimonanthus praecox. Journal of Agricultural Biotechnology 17: 1027–1034.Google Scholar
  22. Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct method. Methods 25: 402–408.CrossRefPubMedGoogle Scholar
  23. Maldonado, A.M., P. Doerner, R.A. Dixon, C.J. Lamb, and R.K. Cameron. 2002. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419: 399–403.CrossRefPubMedGoogle Scholar
  24. Mar, E., Y.B. Serrano, E. Moyano, and N.M. Escobar. 2002. Identification of a strawberry gene encoding a non-specific lipid transfer protein that responds to ABA, wounding and cold stress. Journal of Experimental Botany 389: 1865–1877.Google Scholar
  25. Molina, A., A. Segura, and F. García-Olmedo. 1993. Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Letters 316: 119–122.CrossRefPubMedGoogle Scholar
  26. Monnet, F.P., W. Dieryck, F. Boutrot, P. Joudrier, and M.F. Gautier. 2001. Purification, characterisation and cDNA cloning of a type 2 (7 kDa) lipid transfer protein from Triticum durum. Plant Science 161: 747–755.CrossRefGoogle Scholar
  27. Moosawi-Jorf, S.A., and B.I. Mahin. 2007. In vitro detection of yeast-like and mycelial colonies of Ustilago scitaminea in tissue-cultured plantlets of sugarcane using polymerase chain reaction. Journal of Applied Science 7: 3768–3773.CrossRefGoogle Scholar
  28. Niki, T., I. Mitsuhara, S. Seo, N. Ohtsubo, and Y. Ohashi. 1998. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant and Cell Physiology 39: 500–507.CrossRefGoogle Scholar
  29. Oloriz, M.I., V. Gil, L. Rojas, O. Portal, Y. Izquierdo, E. Jiménez, and M. Höfte. 2012. Sugarcane genes differentially expressed in response to Puccinia melanocephala infection: identification and transcript profiling. Plant Cell Reports 31: 955–969.CrossRefPubMedGoogle Scholar
  30. Ostergaard, J., C. Vergnolle, F. Schoentgen, and J.C. Kader. 1993. Acyl-binding lipid transfer proteins from rape seedlings, a novel category of proteins interacting with lipids. Biochimica et Biophysica Acta 1170: 109–117.CrossRefPubMedGoogle Scholar
  31. Pagnussat, L.A., C. Lombardo, M. Regente, M. Pinedo, M. Martín, and L. de la Canal. 2009. Unexpected localization of a lipid transfer protein in germinating sunflower seeds. Journal of Plant Physiology 166: 797–806.CrossRefPubMedGoogle Scholar
  32. Park, C.J., R. Shin, J.M. Park, G.J. Lee, J.S. You, and K.H. Paek. 2002. Induction of pepper cDNA encoding a lipid transfer protein during the resistance response to tobacco mosaic virus. Plant Molecular Biology 48: 243–254.CrossRefPubMedGoogle Scholar
  33. Pitzschke, A., S. Datta, and H. Persak. 2014. Salt stress in Arabidopsis: lipid transfer protein AZI1 and its control by mitogen-activated protein kinase MPK3. Molecular Plant Biology 7: 722–738.Google Scholar
  34. Que, Y.X., Z.X. Yang, L.P. Xu, and R.K. Chen. 2009. Isolation and identification of differentially expressed genes in sugarcane infected by Ustilago scitaminea. Acta Agronomica Sinica 35: 452–458.Google Scholar
  35. Rodrigues, F.A., J.P. Dagraca, M.L. Delaia, A. Nhani-JR, J.A. Galbiati, M.I.T. Ferro, J.A. Ferro, and S.M. Zingaretti. 2011. Sugarcane genes differentially expressed during water deficit. Biologia Plantarum 55: 43–53.CrossRefGoogle Scholar
  36. Samuel, D., Y.J. Liu, C.S. Cheng, and P.C. Lyu. 2002. Solution structure of plant nonspecific lipid transfer protein-2 from rice (Oryza sativa). The Journal of Biological Chemistry 277: 35267–35273.CrossRefPubMedGoogle Scholar
  37. Seedorf, U., S. Scheek, T. Engel, C. Steif, H.J. Hinz, and G. Assmann. 1994. Structure activity studies of human sterol carrier protein-2. The Journal of Biological Chemistry 269: 2613–2618.PubMedGoogle Scholar
  38. Sterk, P., H. Booij, G.A. Schellekens, A. Van Kammen, and S.C. De Vries. 1991. Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3: 907–921.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Su, Y.C., L.P. Xu, B.T. Xue, Q.B. Wu, J.L. Guo, L.G. Wu, and Y.X. Que. 2013. Molecular cloning and characterization of two pathogenesis-related β-1,3-glucanase genes ScGluA1 and ScGluD1 from sugarcane infected by Sporisorium scitamineum. Plant Cell Reports 32: 1503–1519.CrossRefPubMedGoogle Scholar
  40. Wang, N.J., C.C. Lee, C.S. Cheng, W.C. Lo, Y.F. Yang, M.N. Chen, and P.C. Lyu. 2012. Construction and analysis of a plant non-specific lipid transfer protein database (nsLTPDB). BMC Genomics 13(Suppl. 1): S9.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wang, C., C. Yang, C. Gao, and Y. Wang. 2009. Cloning and expression analysis of 14 lipid transfer protein genes from Tamarix hispida responding to different abiotic stresses. Tree Physiology 29: 1607–1619.CrossRefPubMedGoogle Scholar
  42. Wei, K.F., and X.J. Zhong. 2014. Non-specific lipid transfer proteins in maize. BMC Plant Biology 14: 281.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wilmanns, M., W.A. Stanley, F.V. Filipp, P. Kursula, N. Schuller, R. Erdmann, W. Schliebs, and M. Sattler. 2006. Recognition of a functional peroxisome type 1 target by the dynamic import receptor Pex5p. Molecular Cell 24: 653–663.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Yeats, T.H., and J.K. Rose. 2008. The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Science 17: 191–198.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 2016

Authors and Affiliations

  • Yun Chen
    • 1
  • Jingjing Ma
    • 1
  • Xu Zhang
    • 1
  • Yuting Yang
    • 1
  • Dinggang Zhou
    • 1
  • Qing Yu
    • 1
  • Youxiong Que
    • 1
  • Liping Xu
    • 1
  • Jinlong Guo
    • 1
  1. 1.Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of AgricultureFujian Agriculture and Forestry UniversityFuzhouPeople’s Republic of China

Personalised recommendations