Quickest flow over time network interdiction: mathematical formulation and a solution method

  • Shahram Morowati-ShalilvandEmail author
  • Sedaghat Shahmorad
  • Kamal Mirnia
  • Javad Mehri-Tekmeh
Original Paper


This paper proposes a new problem entitled as “the quickest flow over time network interdiction problem”. This problem stands for removing some of network links using a limited interdiction resource with the aim of maximizing the minimum time required to transfer a predefined flow value through a given network. We formulate the quickest flow problem as a linear fractional programming problem and then, we transform it to a linear formulation. Using the linear formulation of the quickest flow problem we formulate the quickest flow network interdiction problem as a mixed integer linear programming problem. We also provide an improved formulation for the quickest flow network interdiction problem which is computationally more efficient than basic linear formulation. Finally, we apply the basic and improved formulations of the quickest flow network interdiction problem on a real world network and several grid networks.


Quickest flow Network interdiction Flows over time Mixed integer programming 



The authors are grateful for the useful comments of the reviewers and the kind assistance of the editors.


  1. Afshari-Rad M, Taghizadeh-Kakhki H (2013) Maximum dynamic network flow interdiction problem: new formulation and solution procedures. Comput Ind Eng 65(4):531–536CrossRefGoogle Scholar
  2. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and applications. Prentice-Hall Inc, Upper Saddle RiverGoogle Scholar
  3. Akgün I, Tansel Bc, Wood R (2011) The multi-terminal maximum-flow network-interdiction problem. Eur J Oper Res 211(2):241–251. CrossRefGoogle Scholar
  4. Anderson EJ, Philpott AB (1994) Optimisation of flows in networks over time. In: Kelly FP (ed) Probability, statistics and optimisation, chap. 27. Wiley, New York, pp 369–382Google Scholar
  5. Benders J (1962) Partioning procedures for solving mixed integer variables programming problems. Numer Math 4:238–252CrossRefGoogle Scholar
  6. Burkard RE, Dlaska K, Klinz B (1993) The quickest flow problem. ZOR Methods Models Oper Res 37(1):31–58CrossRefGoogle Scholar
  7. Charnes A, Cooper W (1962) Programming with linear fractional functionals. Nav Res Logist Q 9:181–186CrossRefGoogle Scholar
  8. Corley H, Sha D (1982) Most vital links and nodes in weighted networks. Oper Res Lett 1(4):157–160CrossRefGoogle Scholar
  9. Cormican K, Morton D, Wood R (1998) Stochastic network interdiction. Oper Res 46:184–197CrossRefGoogle Scholar
  10. Fleischer LK (2001) Faster algorithms for the quickest transshipment problem. SIAM J Optim 12(1):18–35CrossRefGoogle Scholar
  11. Fleischer L, Skutella M (2002) The quickest multicommodity flow problem. Springer, Berlin, pp 36–53Google Scholar
  12. Fleischer L, Skutella M (2007) Quickest flows over time. SIAM J Comput 36(6):1600–1630CrossRefGoogle Scholar
  13. Fleischer L, Tardos É (1998) Efficient continuous-time dynamic network flow algorithms. Oper Res Lett 23(3–5):71–80CrossRefGoogle Scholar
  14. Ford L, Fulkerson D (1958) Constructing maximal dynamic flows from static flows. Oper Res 6:419–433CrossRefGoogle Scholar
  15. Fulkerson D, Harding G (1977) Maximizing the minimum source-sink path subject to a budget constraint. Math Program 13:116–118CrossRefGoogle Scholar
  16. Ghare P, Montgomery D, Turner T (1971) Optimal interdiction policy for a flow network. Nav Res Logist Q 18:37–45CrossRefGoogle Scholar
  17. Golden B (1978) A problem in network interdiction. Nav Res Logist Q 25:711–713CrossRefGoogle Scholar
  18. Hoppe B, Tardos É (2000) The quickest transshipment problem. Math Oper Res 25(1):36–62CrossRefGoogle Scholar
  19. Ionac D (2001) Some duality theorems for linear-fractional programming having the coefficients in a subfield \(k\) of real numbers. Studia Universitatis Babeş-Bolyai Mathematica XLV I(4):69–73Google Scholar
  20. Israeli E (1999) System interdiction and defense. Ph.D. thesis, Operations Research Department, Naval Postgraduate School, Monterey, CaliforniaGoogle Scholar
  21. Israeli E, Wood R (2002) Shortest path network interdiction. Networks 40:97–111CrossRefGoogle Scholar
  22. Lim C, Smith C (2007) Algorithms for discrete and continuous multicommodity flow network interdiction problems. IIE Trans 39:15–26CrossRefGoogle Scholar
  23. Lin KC, Chern MS (1993) The fuzzy shortest path problem and its most vital arcs. Fuzzy Sets Syst 58:343–353CrossRefGoogle Scholar
  24. Lin M, Jaillet P (2015) On the quickest flow problem in dynamic networks: a parametric min-cost flow approach. In: Proceedings of the twenty-sixth annual ACM-SIAM symposium on discrete algorithmsGoogle Scholar
  25. Lunday BJ, Sherali HD (2010) A dynamic network interdiction problem. Informatica 21(4):553–574Google Scholar
  26. Malik K, Mittal A, Gupta S (1989) The k most vital arcs in the shortest path problem. Oper Res Lett 8:223–227CrossRefGoogle Scholar
  27. McMasters A, Mustin T (1970) Optimal interdiction of a supply network. Nav Res Logist 17:261–268CrossRefGoogle Scholar
  28. Morowati-Shalilvand S, Mehri-Tekmeh J (2012) Finding most vital links over time in a flow network. Int J Optim Control Theor Appl 2(2):173–186CrossRefGoogle Scholar
  29. Murty KG (1983) Linear programming. Wiley, New YorkGoogle Scholar
  30. Royset JO, Wood RK (2007) Solving the bi-objective maximum-flow network-interdiction problem. INFORMS J Comput 19(2):175–184CrossRefGoogle Scholar
  31. Schrijver A (1986) Theory of linear and integer programming. Wiley, New YorkGoogle Scholar
  32. Skutella M (2009) An introduction to network flows over time. In: Cook W, Lovasz L, Vygen J (eds) Research trends in combinatorial optimization. Springer, BerlinGoogle Scholar
  33. Stancu-Minasian IM, Tigan S (1993) On some methods for solving fractional programming problems with inexact data. Studii si Cercetari Matematice 45(6):517–532Google Scholar
  34. Whiteman P (1999) Improving single strike effectiveness for network interdiction. Mil Oper Res 4:15–30CrossRefGoogle Scholar
  35. Wollmer RD (1963) Some methods for determining the most vital link in a railway network. RAND Memorandum RM-3321-ISAGoogle Scholar
  36. Wollmer RD (1970) Algorithm for targeting strikes in a lines-of-communication network. Oper Res 18:497–515CrossRefGoogle Scholar
  37. Wood RK (1993) Deterministic network interdiction. Math Comput Model 17:1–18CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Mathematical SciencesUniversity of TabrizTabrizIran

Personalised recommendations