Skip to main content
Log in

Analysis of product return rate and price competition in two supply chains

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

This article compares a normal and a reverse supply chain in the Betrand Competition. Each supply chain consists of a retailer and an exclusive supplier with stable partnership. The two chains compete with each other in three competition structures: the Centralized Competition Game, the Hybrid Competition Game (including two cases), and the Decentralized Competition Game. In different competition structures, we examine how the degree of competition intensity between the two chains and product return rate of the reverse chain influence the equilibrium decision of market price, profits of two chains and the choice of centralization. The article differs from the study of the traditional supply chain model as follows. Firstly, we analyze the normal and the reverse chain related to the same product in the Betrand competition. Secondly, the data show that the market price decreases with the rising of the product return rate and the falling of the competition intensity. Thirdly, it is found that the total profit of the normal chain decreases with the rising of the product return rate, while the total profit of the reverse chain increases with rising of the product return rate. Profits of two chains increase with the rise of the competition intensity. Finally, this article shows that centralization is an optimal strategy for one chain whereas centralization may be the best for the other chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Amin SH, Zhang GQ (2013) A three-stage model for closed-loop supply chain configuration under uncertainty. Int J Prod Res 51(5):1405–1425

    Article  Google Scholar 

  • Amin-Naseri MR, Khojasteh MA (2015) Price competition between two leader-follower supply chains with risk-averse retailers under demand uncertainty. Int J Adv Manuf Technol 79(1–4):377–393

    Article  Google Scholar 

  • Anderson EJ, Bao Y (2010) Price competition with integrated and decentralized supply chains. Eur J Oper Res 200(1):227–234

    Article  Google Scholar 

  • Atalay A, Souza GC (2013) How does product recovery affect quality choice? Prod Oper Manag 22(4):991–1010

    Article  Google Scholar 

  • Atasu A, Souza GC (2013) How does product recovery affect quality choice? Prod Oper Manag 22(4):991–1010

    Article  Google Scholar 

  • Boyaci T, Gallego G (2004) Supply chain coordination in a market with customer service competition. Prod Oper Manag 13(1):3–22

    Article  Google Scholar 

  • Cachon G, Lariviere M (2005) Supply chain coordination with revenue-sharing contracts: strengths and limitations. Manag Sci 51(1):30–44

    Article  Google Scholar 

  • Carr SM, Karmarkar US (2005) Competition in multi echelon assembly supply chains. Manag Sci 51(1):45–59

    Article  Google Scholar 

  • Chalikias M, Skordoulis M (2014) Implementation of Richardson’s arms race model in advertising expenditure of two competitive firms. Appl Math Sci 8(81):4013–4023

    Google Scholar 

  • Chalikias M, Skordoulis M (2016) Implementation of F.W. Lanchester’s combat model in a supply chain in duopoly: the case of coca-cola and pepsi in Greece. Oper Res 1–9. doi:10.1007/s12351-016-0226-0

  • Chintagunta P, Vilcassim N (1992) An empirical investigation of advertising strategies in a dynamic duopoly. Manag Sci 38(9):1230–1244

    Article  Google Scholar 

  • Chung SL, Wee HM, Yang PC (2008) Optimal policy for a closed-loop supply chain inventory system with remanufacturing. Math Comput Model: Int J 48(5–6):867–881

    Article  Google Scholar 

  • Dana J, Spier K (2001) Revenue sharing and vertical control in the video rental industry. J Ind Econ 49(3):223–245

    Article  Google Scholar 

  • Demirag OC, Keskinocak P, Swann J (2011) Customer rebates and retailer incentives in the presence of competition and price discrimination. Eur J Oper Res 215(1):268–280

    Article  Google Scholar 

  • Erickson G (1992) Empirical analysis of closed-loop duopoly advertising strategies. Manag Sci 38(12):1732–1749

    Article  Google Scholar 

  • Erickson GM (1995) Differential game models of advertising competition. Eur J Oper Res 83(3):431–438

    Article  Google Scholar 

  • Fang Y, Shou B (2015) Managing supply uncertainty under supply chain Cournot competition. Eur J Oper Res 243(1):156–176

    Article  Google Scholar 

  • Fathian M (2012) Applying stackelberg game to find the best price and delivery time policies in competition between two supply chains. Int J Manag Bus Res 2(4):313–327

    Google Scholar 

  • Ferrer G, Swaminathan JM (2010) Managing new and differentiated remanufactured products. Eur J Oper Res 203(2):370–379

    Article  Google Scholar 

  • Fehlmann T (2008) New lanchester theory for requirements prioritization. In: Proceedings of the second international workshop on software product management, Barcelona, September 2008. IEEE, Barcelona, pp 35–40

  • Fruchter GE, Kalish S (1997) Closed-loop advertising strategies in a duopoly. Manag Sci 43(1):54–63

    Article  Google Scholar 

  • Giannoccaro I, Pontrandolfo P (2004) Supply chain coordination by revenue sharing contracts. Int J Prod Econ 89(2):131–139

    Article  Google Scholar 

  • Guide VDR, Wassenhove LN (2001) Managing product returns for remanufacturing. Prod Oper Manag 10(2):142–155

    Article  Google Scholar 

  • Ha AY, Tong S (2008) Contracting and information sharing under supply chain competition. Manag Sci 54(4):701–715

    Article  Google Scholar 

  • Ha AY, Tong SL, Zhang HT (2011) Sharing demand information in competing supply chains with production diseconomies. Manag Sci 57(3):566–581

    Article  Google Scholar 

  • Kunter M (2012) Coordination via cost and revenue sharing in manufacturer-retailer channels. Eur J Oper Res 216(2):477–486

    Article  Google Scholar 

  • Lehr CB, Thun JH, Milling PM (2013) From waste to value-a system dynamics model for strategic decision-making in closed-loop supply chains. Int J Prod Res 51(13):4105–4116

    Article  Google Scholar 

  • Little JDC (1979) Aggregate advertising models: the state of the art. Oper Res 27(4):629–667

    Article  Google Scholar 

  • Kurilova-Palisaitiene J, Lindkvist L, Sundin E (2015) Towards facilitating circular product life-cycle information flow via remanufacturing. Procedia Cirp 29:780–785

    Article  Google Scholar 

  • Ma YG, Wang NM, He Z, Lu JZ, Liang HG (2015) Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands. Eur J Oper Res 243(3):815–825

    Article  Google Scholar 

  • Majumder P, Groenevelt H (2001) Competition in remanufacturing. Prod Oper Manag 10(2):125–141

    Article  Google Scholar 

  • Mcguire TW, Staelin R (1983) An industry equilibrium analysis of downstream vertical integration. Mark Sci 27(1):161–191

    Article  Google Scholar 

  • Moorthy KS (1988) Product and price competition in a duopoly. Mark Sci 7(2):141–168

    Article  Google Scholar 

  • Örsdemir A, Kemahlioğ lu-Ziya E, Parlaktürk A (2014) Competitive quality choice and remanufacturing. Prod Oper Manag 23(1):48–64

    Article  Google Scholar 

  • Pasternack B (1985) Optimal pricing and returns policies for perishable commodities. Mark Sci 4(2):166–176

    Article  Google Scholar 

  • Rickli JL, Camelio JA (2014) Partial disassembly sequencing considering acquired end-of-life product age distributions. Int J Prod Res 52(24):7496–7512

    Article  Google Scholar 

  • Savaskan RC, Bhattacharya S, Van Wassenhove LN (2004) Closed-loop supply chain models with product remanufacturing. Manag Sci J Inst Oper Res Manag Sci 50(2):239–252

    Google Scholar 

  • Savaskan RC, Van Wassenhove LN (2006) Reverse channel design: the case of competing retailers. Manag Sci 52(1):1–14

    Article  Google Scholar 

  • Sawik T (2015) On the fair optimization of cost and customer service level in a supply chain under disruption risks. Omega 53(6):58–66

    Article  Google Scholar 

  • Tuncel E, Zeid A, Kamarthi S (2014) Solving large scale disassembly line balancing problem with uncertainty using reinforcement learning. J Intell Manuf 25(4):647–659

    Article  Google Scholar 

  • Vives X (1984) Duopoly information equilibrium: Cournot and Bertrand. J Econ Theory 34(1):71–94

    Article  Google Scholar 

  • Wilhite A, Burns L, Patnayakuni R, Tseng F (2014) Military supply chains and closed-loop systems: resource allocation and incentives in supply sourcing and supply chain design. Int J Prod Res 52(7):1926–1939

    Article  Google Scholar 

  • Wu D, Baron O, Berman O (2009) Bargaining in competing supply chains with uncertainty. Eur J Oper Res 197(2):548–556

    Article  Google Scholar 

  • Xiao T, Qi X, Yu G (2007) Coordination of supply chain after demand disruptions when retailers compete. Int J Prod Econ 109(1):162–179

    Article  Google Scholar 

  • Yuan KF, Gao Y (2010) Inventory decision-making models for a closed-loop supply chain system. Int J Prod Res 48(20):6155–6187

    Article  Google Scholar 

  • Yuan KF, Ma SH, He B, Gao Y (2015) Inventory decision-making models for a closed-loop supply chain system with different decision-making structures. Int J Prod Res 53(1):183–219

    Article  Google Scholar 

  • Zhang F (2006) Competition, cooperation and information sharing in a two-echelon assembly system. Manuf Serv Oper Manag 8(3):273–291

    Article  Google Scholar 

Download references

Acknowledgements

This article is financially supported by the National Natural Science Foundation of China (Grant Number 71172194), (Grant Number 71390330), (Grant Number 71390331), (Grant Number 71521061), (Grant Number 71571065), (Grant Number 71390335), and the Program for New Century Excellent Talents in University (Grant Number NCET-13-0193) and the Ministry of Education in China of Humanities and Social Science Project (Grant Number 14YJA630077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Shu.

Appendices

Appendix A

This is the proof of Proposition 1.

$$\left\{ {\begin{array}{*{20}c} {\frac{{\partial \pi_{1} }}{{\partial p_{1} }} = 0} \\ {\frac{{\partial \pi_{2} }}{{\partial p_{2} }} = 0} \\ \end{array} } \right. \Rightarrow \left\{ {\begin{array}{*{20}c} {2p_{1} - \varepsilon p_{2} = A + c_{m} } \\ { - \varepsilon \left( {1 + \tau } \right)p_{1} + 2\left( {1 + \tau } \right)p_{2} = c_{m} + \tau c_{r} + \left( {1 + \tau } \right)A} \\ \end{array} } \right.$$
$$\Rightarrow \left\{ {\begin{array}{*{20}c} {p_{1}^{ *} = \frac{{\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)A + \left[ {2\left( {1 + \tau } \right) + \varepsilon } \right]c_{m} + \tau \varepsilon c_{r} }}{{\left( {1 + \tau } \right)\left( {4 - \varepsilon^{2} } \right)}}} \\ {p_{2}^{ *} = \frac{{\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)A + \left[ {\varepsilon \left( {1 + \tau } \right) + 2} \right]c_{m} + 2\tau c_{r} }}{{\left( {1 + \tau } \right)\left( {4 - \varepsilon^{2} } \right)}}} \\ \end{array} } \right.$$

This is the end. □

The proof of Propositions 2 and 3 is similar to the proof of Proposition 1.

Appendix B

This is the proof of Proposition 2.

$$\left\{ {\begin{array}{*{20}c} {\frac{{\partial \pi_{1}^{h} }}{{\partial p_{1} }} = 0} \\ {\frac{{\partial \pi_{2r}^{h} }}{{\partial p_{2} }} = 0} \\ \end{array} } \right. \Rightarrow \left\{ {\begin{array}{*{20}c} {2p_{1} - \varepsilon p_{2} = A + c_{m} } \\ {\varepsilon \left( {1 + \tau } \right)p_{1} - 2\left( {1 + \tau } \right)p_{2} = \tau b - \left( {1 + \tau } \right)\left( {A + w} \right)} \\ \end{array} } \right.$$
$$\Rightarrow p_{1}^{h} (w^{h} ) = \frac{{\left( {1 + \tau } \right)\left[ {\left( {\varepsilon + 2} \right)A + \varepsilon w + 2c_{m} } \right] - \tau b\varepsilon }}{{\left( {1 + \tau } \right)\left( {4 - \varepsilon^{2} } \right)}},\;\;p_{2}^{h} (w^{h} ) = \frac{{\left( {1 + \tau } \right)\left[ {\left( {\varepsilon + 2} \right)A + 2w + \varepsilon c_{m} } \right] - 2\tau b}}{{\left( {1 + \tau } \right)\left( {4 - \varepsilon^{2} } \right)}}.$$

Substitute p h2 (w), p h2 (w) into the equation of π h2m (w)

$$\pi_{2m}^{h} \left( {w^{h} } \right) = \frac{{\left( {1 + \tau } \right)\left[ {\left( {\varepsilon + 2} \right)A + \varepsilon c_{m} + \left( {\varepsilon^{2} - 2} \right)w} \right] + \tau b\left( {2 - \varepsilon^{2} } \right)}}{{\left( {1 + \tau } \right)\left( {4 - \varepsilon^{2} } \right)}}\left[ {\left( {1 + \tau } \right)w - \left( {c_{m} + \tau c_{r} + \tau b} \right)} \right]$$

Then by solving the first order derivate of the profit π h1m (w h), we can get

$$\frac{{\partial \pi_{2m}^{h} \left( {w^{h} } \right)}}{{\partial w^{h} }} = 0 \Rightarrow \frac{{\begin{array}{*{20}c} {\left( {\varepsilon^{2} - 2} \right)\left[ {\left( {1 + \tau } \right)w - \left( {c_{m} + \tau c_{r} + \tau b} \right)} \right]} \\ { + \left[ {\left( {\varepsilon + 2} \right)A + \varepsilon c_{m} + \left( {\varepsilon^{2} - 2} \right)w} \right] + \tau b\left( {2 - \varepsilon^{2} } \right)} \\ \end{array} }}{{\left( {4 - \varepsilon^{2} } \right)}} = 0$$
$$\Rightarrow w^{h} = \frac{{\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)A + \left[ {\left( {2 - \varepsilon^{2} } \right) + \left( {1 + \tau } \right)\varepsilon } \right]c_{m} + \tau \left( {2 - \varepsilon^{2} } \right)\left( {c_{r} + 2b} \right)}}{{2\left( {1 + \tau } \right)\left( {2 - \varepsilon^{2} } \right)}}$$

Substitute the value of \(w^{h} {\text{into }}p_{2}^{h} \left( {w^{h} } \right),p_{2}^{h} \left( {w^{h} } \right)\)

$$p_{1}^{h*} = \frac{{\begin{array}{*{20}c} {\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)A} \\ { + \left[ {\varepsilon \left( {2 - \varepsilon^{2} } \right) + \left( {1 + \tau } \right)\left( {8 - 3\varepsilon^{2} } \right)} \right]c_{m} - \tau \varepsilon \left( {2 - \varepsilon^{2} } \right)c_{r} } \\ \end{array} }}{{2\left( {1 + \tau } \right)\left( {2 - \varepsilon^{2} } \right)\left( {4 - \varepsilon^{2} } \right)}},$$
$$p_{2}^{h*} = \frac{{\begin{array}{*{20}c} {\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)\left( {3 - \varepsilon^{2} } \right)A} \\ { + \left[ {\left( {2 - \varepsilon^{2} } \right) + \varepsilon \left( {1 + \tau } \right)\left( {3 - \varepsilon^{2} } \right)} \right]c_{m} + \tau \left( {2 - \varepsilon^{2} } \right)c_{r} } \\ \end{array} }}{{\left( {1 + \tau } \right)\left( {2 - \varepsilon^{2} } \right)\left( {4 - \varepsilon^{2} } \right)}}$$

This is the end. □

Appendix C

This is the proof of Remark 1.

$$\frac{{\partial p_{1} }}{\partial \tau } = \frac{{\begin{array}{*{20}c} {\left[ {\left( {\varepsilon + 2} \right)A + 2c_{m} + \varepsilon c_{r} } \right]\left( {1 + \tau } \right)} \\ { - \left\{ {\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)A + \left[ {2\left( {1 + \tau } \right) + \varepsilon c_{m} + \varepsilon \tau c_{r} } \right]} \right\}} \\ \end{array} }}{{\left( {1 + \tau } \right)^{2} \left( {4 - \varepsilon^{2} } \right)}} = \frac{{ - \varepsilon \left( {c_{m} - c_{r} } \right)}}{{\left( {1 + \tau } \right)^{2} \left( {4 - \varepsilon^{2} } \right)}} < 0,\;\;\frac{{\partial p_{2} }}{\partial \tau } = \frac{{ - 2\left( {c_{m} - c_{r} } \right)}}{{\left( {1 + \tau } \right)^{2} \left( {4 - \varepsilon^{2} } \right)}} < 0,$$
$$\frac{{\partial p_{1} }}{\partial \varepsilon } = \frac{{\begin{array}{*{20}c} {\left[ {\left( {1 + \tau } \right)A + c_{m} + \tau c_{r} } \right]\left( {4 - \varepsilon^{2} } \right)} \\ { + 2\varepsilon \left\{ {\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)A + \left[ {2\left( {1 + \tau } \right) + \varepsilon } \right]c_{m} + \varepsilon \tau c_{r} } \right\}} \\ \end{array} }}{{\left( {1 + \tau } \right)\left( {4 - \varepsilon^{2} } \right)^{2} }} = \frac{{\begin{array}{*{20}c} {\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)^{2} A} \\ { + [4\varepsilon \left( {1 + \tau } \right) + 4 + \varepsilon^{2} ]c_{m} + \left( {4 + \varepsilon^{2} } \right)c_{r} } \\ \end{array} }}{{\left( {1 + \tau } \right)\left( {4 - \varepsilon^{2} } \right)^{2} }} > 0,$$
$$\frac{{\partial p_{2} }}{\partial \varepsilon } = \frac{{\begin{array}{*{20}c} {\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)^{2} A} \\ { + [\left( {1 + \tau } \right)\left( {4 + \varepsilon^{2} } \right) + 4\varepsilon ]c_{m} + 4\tau \varepsilon c_{r} } \\ \end{array} }}{{\left( {1 + \tau } \right)\left( {4 - \varepsilon^{2} } \right)^{2} }} > 0.$$

This is the end of the proof. □

Appendix D

This is the proof of Proposition 4.

$$\left\{ {\begin{array}{*{20}c} {\frac{{\partial \pi_{1r}^{d} }}{{\partial p_{1} }} = 0} \\ {\frac{{\partial \pi_{2r}^{d} }}{{\partial p_{2} }} = 0} \\ \end{array} } \right. \Rightarrow \left\{ {\begin{array}{*{20}c} {p_{1}^{d} = \frac{{\left( {1 + \tau } \right)\left[ {\left( {\varepsilon + 2} \right)A + 2w_{1} + \varepsilon w_{2} } \right] - \tau b\varepsilon }}{{\left( {1 + \tau } \right)\left( {4 - \varepsilon^{2} } \right)}}} \\ {p_{2}^{d} = \frac{{\left( {1 + \tau } \right)\left[ {\left( {\varepsilon + 2} \right)A + \varepsilon w_{1} + 2w_{2} } \right] - 2\tau b}}{{\left( {1 + \tau } \right)\left( {4 - \varepsilon^{2} } \right)}}} \\ \end{array} } \right.$$

Substitute p d1 (w d1 w d2 ), p d2 (w d1 w d2 ) into the equation \(\pi_{1m}^{d} \left( {w_{1} , w_{2} } \right),\pi_{2m}^{d} \left( {w_{1} , w_{2} } \right)\), and solve the first order derivative of \(\pi_{1m}^{d} \left( {w_{1} , w_{2} } \right), \pi_{2m}^{d} \left( {w_{1} , w_{2} } \right)\)

$$\left\{ {\begin{array}{*{20}c} {\frac{{\partial \pi_{1m}^{d} \left( {w_{1} , w_{2} } \right)}}{{\partial w_{1}^{d} }} = 0} \\ {\frac{{\partial \pi_{2m}^{d} \left( {w_{1} , w_{2} } \right)}}{{\partial w_{2}^{d} }} = 0} \\ \end{array} } \right. \Rightarrow \left\{ {\begin{array}{*{20}c} {w_{1}^{d} = \frac{{\left\{ {\begin{array}{*{20}c} {\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)A} \\ { + \left( {2 - \varepsilon^{2} } \right)\left[ {2\left( {1 + \tau } \right)\left( {2 - \varepsilon^{2} } \right) + \varepsilon } \right]c + \left( {2 - \varepsilon^{2} } \right)\tau c_{r} } \\ \end{array}_{m} } \right\}}}{{\left\{ {\left( {1 + \tau } \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)\left( { - 2\varepsilon^{2} - \varepsilon + 4} \right)} \right\}}}} \\ {w_{2}^{d} = \frac{{\left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)A} \\ { + \left( {2 - \varepsilon^{2} } \right)\left[ {2\left( {2 - \varepsilon^{2} } \right) + \left( {1 + \tau } \right)\varepsilon } \right]c} \\ \end{array}_{m} } \\ { + 2\left( {2 - \varepsilon^{2} } \right)^{2} \tau c_{r} + \tau b\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)\left( { - 2\varepsilon^{2} - \varepsilon + 4} \right)} \\ \end{array} } \right\}}}{{\left\{ {\left( {1 + \tau } \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)\left( { - 2\varepsilon^{2} - \varepsilon + 4} \right)} \right\}}}} \\ \end{array} } \right.$$

Substitute the value of w d1 w d2 into p d1 (w d1 w d2 ), p d2 (w d1 w d2 )

$$p_{1}^{d*} = \frac{{\left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {2\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)\left( {3 - \varepsilon^{2} } \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)A} \\ { + \left( {2 - \varepsilon^{2} } \right)\left[ {\left( {1 + \tau } \right)\left( {8 - 3\varepsilon^{2} } \right) + 2\varepsilon \left( {3 - \varepsilon^{2} } \right)} \right]c} \\ \end{array}_{m} } \\ { + 2\left( {2 - \varepsilon^{2} } \right)\left( {3 - \varepsilon^{2} } \right)\varepsilon \tau c_{r} } \\ \end{array} } \right\}}}{{\left\{ {\left( {1 + \tau } \right)\left( {4 - \varepsilon^{2} } \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)\left( { - 2\varepsilon^{2} - \varepsilon + 4} \right)} \right\}}},p_{2}^{d*} = \frac{{\left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {2\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)\left( {3 - \varepsilon^{2} } \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)A} \\ { + \left( {2 - \varepsilon^{2} } \right)\left[ {\left( {8 - 3\varepsilon^{2} } \right) + 2\varepsilon \left( {1 + \tau } \right)\left( {3 - \varepsilon^{2} } \right)} \right]c} \\ \end{array}_{m} } \\ { + \left( {2 - \varepsilon^{2} } \right)\left( {8 - 3\varepsilon^{2} } \right)\tau c_{r} } \\ \end{array} } \right\}}}{{\left( {1 + \tau } \right)\left( {4 - \varepsilon^{2} } \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)\left( { - 2\varepsilon^{2} - \varepsilon + 4} \right)}}$$

This is the end of the proof. □

Appendix E

This is the proof of Proposition 5.

It is easy to prove Proposition 5a. If we want to obtain the in equation π 1 > π H1 , we need to prove \(\frac{{\pi_{1} }}{{\pi_{1}^{H} }} > 1\). Because \(\frac{{\pi_{1} }}{{\pi_{1}^{H} }} = \frac{{2\left( {2 - \varepsilon^{2} } \right)}}{{3 - \varepsilon^{2} }} > 1\) and 0 < ɛ < 1, therefore \(\frac{{2\left( {2 - \varepsilon^{2} } \right)}}{{3 - \varepsilon^{2} }} > 1\). Then Proposition 5a can be obtained.

The following is the proof of Proposition 5b.

$$p_{1}^{d*} = \frac{{\left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {2\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)\left( {3 - \varepsilon^{2} } \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)A} \\ { + \left( {2 - \varepsilon^{2} } \right)\left[ {\left( {1 + \tau } \right)\left( {8 - 3\varepsilon^{2} } \right) + 2\varepsilon \left( {3 - \varepsilon^{2} } \right)} \right]c} \\ \end{array}_{m} } \\ { + 2\left( {2 - \varepsilon^{2} } \right)\left( {3 - \varepsilon^{2} } \right)\varepsilon \tau c_{r} } \\ \end{array} } \right\}}}{{\left\{ {\left( {1 + \tau } \right)\left( {4 - \varepsilon^{2} } \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)\left( { - 2\varepsilon^{2} - \varepsilon + 4} \right)} \right\}}},$$
$$p_{2}^{d*} = \frac{{\left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {2\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)\left( {3 - \varepsilon^{2} } \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)A} \\ { + \left( {2 - \varepsilon^{2} } \right)\left[ {\left( {8 - 3\varepsilon^{2} } \right) + 2\varepsilon \left( {1 + \tau } \right)\left( {3 - \varepsilon^{2} } \right)} \right]c} \\ \end{array}_{m} } \\ { + \left( {2 - \varepsilon^{2} } \right)\left( {8 - 3\varepsilon^{2} } \right)\tau c_{r} } \\ \end{array} } \right\}}}{{\left( {1 + \tau } \right)\left( {4 - \varepsilon^{2} } \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)\left( { - 2\varepsilon^{2} - \varepsilon + 4} \right)}}$$

Therefore, if we want to compare the value of π 2 with π h2 , it is necessary to look at the coefficient of π 2π h2 .

When 0 < ɛ < 1, then the in equation \(\frac{1}{{\left( {1 + \tau } \right)\left( {4 - \varepsilon^{2} } \right)^{2} }} - \frac{{3 - \varepsilon^{2} }}{{2\left( {1 + \tau } \right)\left( {2 - \varepsilon^{2} } \right)\left( {4 - \varepsilon^{2} } \right)^{2} }} = \frac{{1 - \varepsilon^{2} }}{{2\left( {1 + \tau } \right)\left( {2 - \varepsilon^{2} } \right)\left( {4 - \varepsilon^{2} } \right)^{2} }} > 0\). Therefore, it is clear that π 2 > π h2 .

This is the end of the proof. □

Appendix F

It is easy to prove Proposition 9a. The optimal values of retail price in different situations are as follows.

$$\left\{ {\begin{array}{*{20}c} {p_{1}^{ *} = \frac{{\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)A + \left[ {2\left( {1 + \tau } \right) + \varepsilon } \right]c_{m} + \tau \varepsilon c_{r} }}{{\left( {1 + \tau } \right)\left( {4 - \varepsilon^{2} } \right)}}} \\ {p_{2}^{ *} = \frac{{\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)A + \left[ {\varepsilon \left( {1 + \tau } \right) + 2} \right]c_{m} + 2\tau c_{r} }}{{\left( {1 + \tau } \right)\left( {4 - \varepsilon^{2} } \right)}}} \\ \end{array} } \right.,\left\{ {\begin{array}{*{20}c} {p_{1}^{h*} = \frac{{\begin{array}{*{20}c} {\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)A} \\ { + \left[ {\varepsilon \left( {2 - \varepsilon^{2} } \right) + \left( {1 + \tau } \right)\left( {8 - 3\varepsilon^{2} } \right)} \right]c_{m} - \tau \varepsilon \left( {2 - \varepsilon^{2} } \right)c_{r} } \\ \end{array} }}{{2\left( {1 + \tau } \right)\left( {2 - \varepsilon^{2} } \right)\left( {4 - \varepsilon^{2} } \right)}}} \\ {p_{2}^{h*} = \frac{{\begin{array}{*{20}c} {\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)\left( {3 - \varepsilon^{2} } \right)A} \\ { + \left[ {\left( {2 - \varepsilon^{2} } \right) + \varepsilon \left( {1 + \tau } \right)\left( {3 - \varepsilon^{2} } \right)} \right]c_{m} + \tau \left( {2 - \varepsilon^{2} } \right)c_{r} } \\ \end{array} }}{{\left( {1 + \tau } \right)\left( {2 - \varepsilon^{2} } \right)\left( {4 - \varepsilon^{2} } \right)}}} \\ \end{array} } \right.$$
$$\begin{array}{*{20}c} {p_{1}^{H*} = \frac{{\begin{array}{*{20}c} {\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)\left( {3 - \varepsilon^{2} } \right)A + \varepsilon \tau \left( {3 - \varepsilon^{2} } \right)c_{r} } \\ { + \left[ {\left( {1 + \tau } \right)\left( {2 - \varepsilon^{2} } \right) + \varepsilon \left( {3 - \varepsilon^{2} } \right)} \right]c_{m} } \\ \end{array} }}{{\left( {1 + \tau } \right)\left( {2 - \varepsilon^{2} } \right)\left( {4 - \varepsilon^{2} } \right)}}} \\ {p_{2}^{H*} = \frac{{\begin{array}{*{20}c} {\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)A + \tau \left( {8 - 3\varepsilon^{2} } \right)c_{r} } \\ { + \left[ {\left( {1 + \tau } \right)\varepsilon \left( {2 - \varepsilon^{2} } \right) + \left( {8 - 3\varepsilon^{2} } \right)} \right]c_{m} } \\ \end{array} }}{{2\left( {1 + \tau } \right)\left( {2 - \varepsilon^{2} } \right)\left( {4 - \varepsilon^{2} } \right)}}} \\ \end{array} ,\;\left\{ {\begin{array}{*{20}c} {p_{1}^{d*} = } & {\frac{{\left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {2\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)\left( {3 - \varepsilon^{2} } \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)A} \\ { + \left( {2 - \varepsilon^{2} } \right)\left[ {\left( {1 + \tau } \right)\left( {8 - 3\varepsilon^{2} } \right) + 2\varepsilon \left( {3 - \varepsilon^{2} } \right)} \right]c} \\ \end{array}_{m} } \\ { + 2\left( {2 - \varepsilon^{2} } \right)\left( {3 - \varepsilon^{2} } \right)\varepsilon \tau c_{r} } \\ \end{array} } \right\}}}{{\left\{ {\left( {1 + \tau } \right)\left( {4 - \varepsilon^{2} } \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)\left( { - 2\varepsilon^{2} - \varepsilon + 4} \right)} \right\}}}} \\ {p_{2}^{d*} } & {\frac{{\left\{ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {2\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)\left( {3 - \varepsilon^{2} } \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)A} \\ { + \left( {2 - \varepsilon^{2} } \right)\left[ {\left( {8 - 3\varepsilon^{2} } \right) + 2\varepsilon \left( {1 + \tau } \right)\left( {3 - \varepsilon^{2} } \right)} \right]c} \\ \end{array}_{m} } \\ { + \left( {2 - \varepsilon^{2} } \right)\left( {8 - 3\varepsilon^{2} } \right)\tau c_{r} } \\ \end{array} } \right\}}}{{\left\{ {\left( {1 + \tau } \right)\left( {4 - \varepsilon^{2} } \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)\left( { - 2\varepsilon^{2} - \varepsilon + 4} \right)} \right\}}}} \\ \end{array} } \right.$$

Therefore, the following inequations can be calculated easily.

$$p_{1}^{ *} - p_{1}^{h *} = \frac{{\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)A + \left[ {2\left( {1 + \tau } \right) + \varepsilon } \right]c_{m} + \tau \varepsilon c_{r} }}{{\left( {1 + \tau } \right)\left( {4 - \varepsilon^{2} } \right)}} - \frac{{\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)A + \left[ {\varepsilon \left( {2 - \varepsilon^{2} } \right) + \left( {1 + \tau } \right)\left( {8 - 3\varepsilon^{2} } \right)} \right]c_{m} + \tau \varepsilon \left( {2 - \varepsilon^{2} } \right)c_{r} }}{{2\left( {1 + \tau } \right)\left( {2 - \varepsilon^{2} } \right)\left( {4 - \varepsilon^{2} } \right)}};$$
$$= \frac{{ - \varepsilon \left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)A - \left[ {\left( {1 + \tau } \right)\varepsilon - \left( {2 - \varepsilon^{2} } \right)} \right]\varepsilon c_{m} + \varepsilon \tau \left( {2 - \varepsilon^{2} } \right)c_{r} }}{{2\left( {1 + \tau } \right)\left( {2 - \varepsilon^{2} } \right)\left( {4 - \varepsilon^{2} } \right)}} < 0$$
$$p_{1}^{h*} - p_{1}^{d*} = \frac{{\left( {3\varepsilon^{2} - 8} \right)\left\{ {\begin{array}{*{20}c} {\left( {1 + \tau } \right)\left( {\varepsilon + 2} \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)A} \\ { + \varepsilon \left[ {\left( {1 + \tau } \right)\varepsilon + \left( {2 - \varepsilon^{2} } \right)} \right]c_{m} + \left( {2 - \varepsilon^{2} } \right)\varepsilon \tau c_{r} } \\ \end{array} } \right\} }}{{\left\{ {2\left( {1 + \tau } \right)\left( {2 - \varepsilon^{2} } \right)\left( {4 - \varepsilon^{2} } \right)\left( { - 2\varepsilon^{2} + \varepsilon + 4} \right)\left( { - 2\varepsilon^{2} - \varepsilon + 4} \right)} \right\}}} < 0;$$

In the same way, we can get \(p_{1}^{H*} - p_{1}^{d*} < 0\).

It is similar to proof of \(p_{2}^{ *} - p_{2}^{h *} < 0,p_{2}^{h} - p_{1}^{H*} < 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Shu, T., Wang, S. et al. Analysis of product return rate and price competition in two supply chains. Oper Res Int J 18, 469–496 (2018). https://doi.org/10.1007/s12351-016-0273-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-016-0273-6

Keywords

Navigation