The additional prognostic value of myocardial perfusion SPECT in patients with known coronary artery disease with high exercise capacity

  • Thais R. PeclatEmail author
  • Ana Carolina do A. H. de Souza
  • Victor F. Souza
  • Aline M. K. Nakamoto
  • Felipe M. Neves
  • Izabella C. R. Silva
  • Ronaldo S. L. Lima
Original Article



The prognostic value of myocardial perfusion imaging (MPI) in patients with known coronary artery disease (CAD) and high exercise capacity is still unknown. We sought to determine the MPI additional prognostic value over electrocardiography (ECG) stress testing alone in patients with known CAD who achieved ≥ 10 metabolic equivalents (METs).

Methods and Results

We evaluated 926 patients with known CAD referred for MPI with exercise stress. Patients were followed for a mean of 32.4 ± 9.7 months for the occurrence of all-cause death or nonfatal myocardial infarction (MI). Those achieving ≥ 10 METs were younger, predominantly male, and had lower prevalence of cardiovascular risk factors. Patients reaching ≥ 10 METs had a lower annualized rate of hard events compared to their counterparts achieving < 10 METs (1.13%/year vs 3.95%/year, P < .001). Patients who achieved ≥ 10 METs with abnormal scans had a higher rate of hard events compared to those with normal scans (3.37%/year vs 0.57%/year, P = .023). Cardiac workload < 10 METs and an abnormal MPI scan were independent predictors of hard events.


MPI is able to stratify patients with known CAD achieving ≥ 10 METs for the occurrence of all-cause death and nonfatal MI, with incremental prognostic value over ECG stress test alone.


CAD MPI SPECT ECG stress METs prognostic outcomes exercise capacity 



Myocardial perfusion imaging


Coronary artery disease


Metabolic equivalents


Single photon emission computed tomography


Myocardial infarction


Coronary artery bypass graft


Percutaneous coronary intervention


Summed stress score


Summed difference score


Summed rest score



The authors Thais R. Peclat, Ana Carolina do A. H. de Souza, Victor F. Souza, Aline M. K. Nakamoto, Felipe M. Neves, Izabella C. R. Silva, and Ronaldo S. L. Lima have nothing to disclose.

Supplementary material

12350_2019_1960_MOESM1_ESM.pptx (760 kb)
Supplementary material 1 (PPTX 759 kb)
12350_2019_1960_MOESM2_ESM.mpeg (7.1 mb)
Supplementary material 2 (MPEG 7251 kb)
12350_2019_1960_MOESM3_ESM.docx (14 kb)
Supplementary material 3 (DOCX 14 kb)


  1. 1.
    Sanchis-Gomar F, Perez-Quilis C, Leischik R, Lucia A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann Transl Med 2016;4:256.CrossRefGoogle Scholar
  2. 2.
    Hansen CL, Goldstein RA, Akinboboye OO, Berman DS, Botvinick EH, Churchwell KB, et al. Myocardial perfusion and function: Single photon emission computed tomography. J Nucl Cardiol 2007;14:e39-60.CrossRefGoogle Scholar
  3. 3.
    Bourque JM, Beller GA. Value of exercise ECG for risk stratification in suspected or known CAD in the era of advanced imaging technologies. JACC Cardiovasc Imaging 2015;8:1309-21.CrossRefGoogle Scholar
  4. 4.
    Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol 2003;42:1318-33.CrossRefGoogle Scholar
  5. 5.
    Peterson PN, Magid DJ, Ross C, Ho PM, Rumsfeld JS, Lauer MS, et al. Association of exercise capacity on treadmill with future cardiac events in patients referred for exercise testing. Arch Intern Med 2008;168:174-9.CrossRefGoogle Scholar
  6. 6.
    Morise AP, Jalisi F. Evaluation of pretest and exercise test scores to assess all-cause mortality in unselected patients presenting for exercise testing with symptoms of suspected coronary artery disease. J Am Coll Cardiol 2003;42:842-50.CrossRefGoogle Scholar
  7. 7.
    Goraya TY, Jacobsen SJ, Pellikka PA, Miller TD, Khan A, Weston SA, et al. Prognostic value of treadmill exercise testing in elderly persons. Ann Intern Med 2000;132:862-70.CrossRefGoogle Scholar
  8. 8.
    Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA 2009;301:2024-35.CrossRefGoogle Scholar
  9. 9.
    Lee DS, Verocai F, Husain M, Al Khdair D, Wang X, Freeman M, et al. Cardiovascular outcomes are predicted by exercise-stress myocardial perfusion imaging: Impact on death, myocardial infarction, and coronary revascularization procedures. Am Heart J 2011;161:900-7.CrossRefGoogle Scholar
  10. 10.
    Faselis C, Doumas M, Pittaras A, Narayan P, Myers J, Tsimploulis A, et al. Exercise capacity and all-cause mortality in male veterans with hypertension aged ≥ 70 years. Hypertension 2014;64:30-5.CrossRefGoogle Scholar
  11. 11.
    Bourque JM, Holland BH, Watson DD, Beller GA. Achieving an exercise workload of > or = 10 metabolic equivalents predicts a very low risk of inducible ischemia: Does myocardial perfusion imaging have a role? J Am Coll Cardiol 2009;54:538-45.CrossRefGoogle Scholar
  12. 12.
    Bourque JM, Charlton GT, Holland BH, Belyea CM, Watson DD, Beller GA. Prognosis in patients achieving ≥ 10 METS on exercise stress testing: Was SPECT imaging useful? J Nucl Cardiol 2011;18:230-7.CrossRefGoogle Scholar
  13. 13.
    Smith L, Myc L, Watson D, Beller GA, Bourque JM. A high exercise workload of ≥ 10 METS predicts a low risk of significant ischemia and cardiac events in older adults. J Nucl Cardiol 2018. Scholar
  14. 14.
    Duvall WL, Levine EJ, Moonthungal S, Fardanesh M, Croft LB, Henzlova MJ. A hypothetical protocol for the provisional use of perfusion imaging with exercise stress testing. J Nucl Cardiol 2013;20:739-47.CrossRefGoogle Scholar
  15. 15.
    Hung RK, Al-Mallah MH, McEvoy JW, Whelton SP, Blumenthal RS, Nasir K, et al. Prognostic value of exercise capacity in patients with coronary artery disease: The FIT (Henry Ford ExercIse Testing) project. Mayo Clin Proc 2014;89:1644-54.CrossRefGoogle Scholar
  16. 16.
    Diamond GA, Forrester JS, Hirsch M, Staniloff HM, Vas R, Berman DS, et al. Application of conditional probability analysis to the clinical diagnosis of coronary artery disease. J Clin Investig 1980;65:1210-21.CrossRefGoogle Scholar
  17. 17.
    Lima R, Ronaldo L, De Lorenzo A, Andrea DL, Camargo G, Gabriel C, et al. Prognostic value of myocardium perfusion imaging with a new reconstruction algorithm. J Nucl Cardiol 2014;21:149-57.CrossRefGoogle Scholar
  18. 18.
    Lima RSL, Peclat TR, Souza ACAH, Nakamoto AMK, Neves FM, Souza VF, et al. Prognostic value of a faster, low-radiation myocardial perfusion SPECT protocol in a CZT camera. Int J Cardiovasc Imaging 2017;33:2049-56.CrossRefGoogle Scholar
  19. 19.
    Lima R, Peclat T, Soares T, Ferreira C, Souza AC, Camargo G. Comparison of the prognostic value of myocardial perfusion imaging using a CZT-SPECT camera with a conventional anger camera. J Nucl Cardiol 2017;24:245-51.CrossRefGoogle Scholar
  20. 20.
    Berman DS, Kang X, Van Train KF, Lewin HC, Cohen I, Areeda J, et al. Comparative prognostic value of automatic quantitative analysis versus semiquantitative visual analysis of exercise myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1998;32:1987-95.CrossRefGoogle Scholar
  21. 21.
    Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers. J Nucl Cardiol 2016;23:606-39.CrossRefGoogle Scholar
  22. 22.
    Berman DS, Hachamovitch R, Kiat H, Cohen I, Cabico JA, Wang FP, et al. Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: A basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1995;26:639-47.CrossRefGoogle Scholar
  23. 23.
    Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: Differential stratification for risk of cardiac death and myocardial infarction. Circulation 1998;97:535-43.CrossRefGoogle Scholar
  24. 24.
    Thygesen K, Alpert JS, White HD. Infarction JEAAWTFftRoM. Universal definition of myocardial infarction. J Am Coll Cardiol 2007;50:2173-95.CrossRefGoogle Scholar
  25. 25.
    Gimelli A, Rossi G, Landi P, Marzullo P, Iervasi G, L’abbate A, et al. Stress/rest myocardial perfusion abnormalities by gated SPECT: Still the best predictor of cardiac events in stable ischemic heart disease. J Nucl Med 2009;50:546-53.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2019

Authors and Affiliations

  • Thais R. Peclat
    • 1
    Email author
  • Ana Carolina do A. H. de Souza
    • 1
  • Victor F. Souza
    • 1
  • Aline M. K. Nakamoto
    • 1
  • Felipe M. Neves
    • 1
  • Izabella C. R. Silva
    • 1
  • Ronaldo S. L. Lima
    • 1
    • 2
    • 3
  1. 1.Cardiology, Clementino Fraga Filho University HospitalFederal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Fonte ImagemRio de JaneiroBrazil
  3. 3.Clínica de Diagnóstico por ImagemRio de JaneiroBrazil

Personalised recommendations