Advertisement

Functional significance of post-myocardial infarction inflammation evaluated by 18F-fluorodeoxyglucose imaging in swine model

  • Xiao-Ying Xi
  • Feifei Zhang
  • Jianfeng Wang
  • Wei Gao
  • Yi Tian
  • Hongyu Xu
  • Min Xu
  • Yuetao WangEmail author
  • Min-Fu YangEmail author
Original Article
  • 43 Downloads

Abstract

Background

The aim of the study was to investigate the relationship between post-myocardial infarction (MI) inflammation and left ventricular (LV) remodeling in a swine model by 18F-fluorodeoxyglucose (FDG) imaging.

Methods

MI was induced in swine by balloon occlusion of the left anterior descending coronary artery. A series of FDG positron emission tomography (PET) images were taken within 2 weeks post-MI, employing a comprehensive strategy to suppress the physiological uptake of cardiomyocytes. Echocardiography was applied to evaluate LV volume, global and regional function. CD68+ macrophage and glucose transporters (GLUT-1, -3 and -4) were investigated by immunostaining.

Results

The physiological uptake of myocardium was adequately suppressed in 92.3% of PET scans verified by visual analysis, which was further confirmed by the minimal expression of myocardial GLUT-4. Higher FDG uptake was observed in the infarct than in the remote area and persisted within the observational period of 2 weeks. The FDG uptake of infarcted myocardium on day 1 post-MI was correlated with LV global remodeling, and the FDG uptake of infarcted myocardium on days 1 and 8 post-MI had a trend of correlating with regional remodeling of the infarct area.

Conclusions

We here report a feasible swine model for investigating post-MI inflammation. FDG signal in the infarct area of swine persisted for a longer duration than has been reported in small animals. FDG activity in the infarct area could predict LV remodeling.

Keywords

FDG PET Myocardial infarction Inflammation 

Abbreviations

MI

Myocardial infarction

GLUT

Glucose transporter

FDG

Fluorodeoxyglucose

LV

Left ventricular

SPECT

Single photon emission computed tomography

PET/CT

Positron emission tomography/computed tomography

SUV

Standardized uptake value

EDV

End-diastolic volume

ESV

End-systolic volume

EF

Ejection fraction

GLS

Global longitudinal strain

ILS

Infarct area longitudinal strain

Notes

Acknowledgements

We would like to thank Dr Li Li from the Department of Pathology of Fuwai Hospital for help and advice on histological assessment.

Disclosures

Xiao-Ying Xi, Feifei Zhang, Jianfeng Wang, Wei Gao, Yi Tian, Hongyu Xu, Min Xu, Yuetao Wang and Min-Fu Yang have nothing to disclose.

Supplementary material

12350_2019_1952_MOESM1_ESM.pptx (3.4 mb)
Supplementary material 1 (PPTX 3462 kb)
12350_2019_1952_MOESM2_ESM.wma (2.3 mb)
Supplementary material 2 (WMA 2386 kb)

References

  1. 1.
    Kempf T, Zarbock A, Widera C, Butz S, Stadtmann A, Rossaint J, et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med 2011;17:581-8.CrossRefGoogle Scholar
  2. 2.
    Jung K, Kim P, Leuschner F, Gorbatov R, Kim JK, Ueno T, et al. Endoscopic time-lapse imaging of immune cells in infarcted mouse hearts. Circ Res 2013;112:891-9.CrossRefGoogle Scholar
  3. 3.
    Majmudar MD, Keliher EJ, Heidt T, Leuschner F, Truelove J, Sena BF, et al. Monocyte-directed RNAi targeting CCR3 improves infarct healing in atherosclerosis-prone mice. Circulation 2013;127:2038-46.CrossRefGoogle Scholar
  4. 4.
    Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 2013;339:161-6.CrossRefGoogle Scholar
  5. 5.
    Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005;5:953-64.CrossRefGoogle Scholar
  6. 6.
    Nahrendorf M, Pittet MJ, Swirski FK. Monocytes: Protagonists of infarct inflammation and repair after myocardial infarction. Circulation 2010;121:2437-45.CrossRefGoogle Scholar
  7. 7.
    Van der Laan AM, Ter Horst EN, Delewi R, Begieneman MP, Krijnen PA, Hirsch A, et al. Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. Eur Heart J 2014;35:376-85.CrossRefGoogle Scholar
  8. 8.
    Dimitrijević O, Stojcevski BD, Ignjatović S, Singh NM. Serial measurements of C-reactive protein after acute myocardial infarction in predicting one-year outcome. Int Heart J 2006;47:833-42.CrossRefGoogle Scholar
  9. 9.
    Prondzinsky R, Unverzagt S, Lemm H, Wegener NA, Schlitt A, Heinroth KM, et al. Interleukin-6, -7, -8 and -10 predict outcome in acute myocardial infarction complicated by cardiogenic shock. Clin Res in Cardiol 2012;101:375-84.CrossRefGoogle Scholar
  10. 10.
    White DA, Su Y, Kanellakis P, Kiriazis H, Morand EF, Bucala R, et al. Differential roles of cardiac and leukocyte derived macrophage migration inhibitory factor in inflammatory responses and cardiac remodelling post myocardial infarction. J Mol Cell Cardiol 2014;69:32-42.CrossRefGoogle Scholar
  11. 11.
    Thackeray JT, Bankstahl JP, Wang Y, Korf-Klingebiel M, Walte A, Wittneben A, et al. Targeting post-infarct inflammation by PET imaging: Comparison of (68) Ga-citrate and (68) Ga-DOTATATE with (18) F-FDG in a mouse model. Eur J Nucl Med Mol Imaging 2015;42:317-27.CrossRefGoogle Scholar
  12. 12.
    Lee WW, Marinelli B, van der Laan AM, Sena BF, Gorbatov R, Leuschner F, et al. PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol 2012;59:153-63.CrossRefGoogle Scholar
  13. 13.
    Rischpler C, Dirschinger RJ, Nekolla SG, Kossmann H, Nicolosi S, Hanus F, et al. Prospective evaluation of 18F-Fluorodeoxyglucose uptake in postischemic myocardium by simultaneous positron emission tomography/magnetic resonance imaging as a prognostic marker of functional outcome. Circ Cardiovasc Imaging. 2016;9:e004316.CrossRefGoogle Scholar
  14. 14.
    Wollenweber T, Roentgen P, Schäfer A, Schatka I, Zwadlo C, Brunkhorst T, et al. Characterizing the inflammatory tissue response to acute myocardial infarction by clinical multimodality noninvasive imaging. Circ Cardiovasc Imaging 2014;7:811-8.CrossRefGoogle Scholar
  15. 15.
    Osborne MT, Hulten EA, Murthy VL, Skali H, Taqueti VR, Dorbala S, et al. Patient preparation for cardiac fluorine-18 fluorodeoxyglucose positron emission tomography imaging of inflammation. J Nucl Cardiol 2017;24:86-99.CrossRefGoogle Scholar
  16. 16.
    Romito E, Shazly T, Spinale FG. In vivo assessment of regional mechanics post-myocardial infarction: A focus on the road ahead. J Appl Physiol 2017;123:728-45.CrossRefGoogle Scholar
  17. 17.
    Chan W, Duffy SJ, White DA, Gao XM, Du XJ, Ellims AH, et al. Acute left ventricular remodeling following myocardial infarction: Coupling of regional healing with remote extracellular matrix expansion. JACC Cardiovasc Imaging 2012;5:884-93.CrossRefGoogle Scholar
  18. 18.
    Carrick D, Haig C, Rauhalammi S, Ahmed N, Mordi I, McEntegart M, et al. Pathophysiology of LV remodeling in survivors of STEMI: Inflammation, remote myocardium, and prognosis. JACC Cardiovasc Imaging 2015;8:779-89.CrossRefGoogle Scholar
  19. 19.
    Reinstadler SJ, Stiermaier T, Liebetrau J, Fuernau G, Eitel C, de Waha S, et al. Prognostic significance of remote myocardium alterations assessed by quantitative noncontrast T1 mapping in ST-segment elevation myocardial infarction. JACC Cardiovasc Imaging 2018;11:411-9.CrossRefGoogle Scholar
  20. 20.
    Puntmann VO, Carr-White G, Jabbour A, Yu CY, Gebker R, Kelle S, et al. Native T1 and ECV of noninfarcted myocardium and outcome in patients with coronary artery disease. J Am Cool Cardiol 2018;71:766-78.CrossRefGoogle Scholar
  21. 21.
    McCall FC, Telukuntla KS, Karantalis V, Suncion VY, Heldman AW, Mushtag M, et al. Myocardial infarction and intramyocardial injection models in swine. Nat Protoc 2012;7:1479-96.CrossRefGoogle Scholar
  22. 22.
    Wang J, Wang Y, Yang M, Shao S, Tian Y, Shao X, et al. Mechanical contraction to guide CRT left-ventricular lead placement instead of electrical activation in myocardial infarction with left ventricular dysfunction: An experimental study based on non-invasive gated myocardial Perfusion imaging and invasive electroanatomic mapping. J Nucl Cardiol. 2019.  https://doi.org/10.1007/s12350-019-01710-2.CrossRefPubMedGoogle Scholar
  23. 23.
    Shao X, Wang J, Tian Y, Fan S, Zhang F, Yang W, et al. Role of gated myocardial glucose metabolic imaging in assessing left ventricular systolic dyssynchrony after myocardial infarction and the influential factors. Sci Rep. 2018;8:11178.CrossRefGoogle Scholar
  24. 24.
    Higashi T, Tamaki N, Honda T, Torizuka T, Kimura T, Inokuma T, et al. Expression of glucose transporters in human pancreatic tumors compared with increased FDG accumulation in PET study. J Nucl Med 1997;38:1337-44.PubMedGoogle Scholar
  25. 25.
    Mochizuki T, Tsukamoto E, Kuge Y, Kanegae K, Zhao S, Hikosaka K, et al. FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. J Nucl Med 2001;42:1551-5.PubMedGoogle Scholar
  26. 26.
    Lautamäki R, Schuleri KH, Sasano T, Javadi MS, Youssef A, Merrill J, et al. Integration of infarct size, tissue perfusion, and metabolism by hybrid cardiac positron emission tomography/computed tomography: Evaluation in a porcine model of myocardial infarction. Circ Cardiovasc Imaging 2009;2:299-305.CrossRefGoogle Scholar
  27. 27.
    Thackeray JT, Bankstahl JP, Wang Y, Wollert KC, Bengel FM. Clinically relevant strategies for lowering cardiomyocyte glucose uptake for 18F-FDG imaging of myocardial inflammation in mice. Eur J Nucl Med Mol Imaging 2015;42:771-80.CrossRefGoogle Scholar
  28. 28.
    Cheng VY, Slomka PJ, Ahlen M, Thomson LE, Waxman AD, Berman DS. Impact of carbohydrate restriction with and without fatty acid loading on myocardial 18F-FDG uptake during PET: A randomized controlled trial. J Nucl Cardiol 2010;17:286-91.CrossRefGoogle Scholar
  29. 29.
    Wykrzykowska J, Lehman S, Williams G, Parker JA, Palmer MR, Varkey S, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 2009;50:563-8.CrossRefGoogle Scholar
  30. 30.
    Schatka I, Bengel FM. Advanced imaging of cardiac sarcoidosis. J Nucl Med 2014;55:99-106.CrossRefGoogle Scholar
  31. 31.
    Minamimoto R, Morooka M, Kubota K, Ito K, Masuda-Miyata Y, Mitsumoto T, et al. Value of FDG-PET/CT using unfractionated heparin for managing primary cardiac lymphoma and several key findings. J Nucl Cardiol 2011;18:516-20.CrossRefGoogle Scholar
  32. 32.
    Toyama H, Ichise M, Liow JS, Vines DC, Seneca NM, Modell KJ, et al. Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 2004;31:251-6.CrossRefGoogle Scholar
  33. 33.
    Koudstaal S, Gho JM, van Hout GP, Jansen MS, Gründeman PF, et al. Myocardial infarction and functional outcome assessment in pigs. J Vis Exp. 2014;86:e51269.Google Scholar

Copyright information

© American Society of Nuclear Cardiology 2019

Authors and Affiliations

  • Xiao-Ying Xi
    • 1
  • Feifei Zhang
    • 2
  • Jianfeng Wang
    • 2
  • Wei Gao
    • 3
  • Yi Tian
    • 4
  • Hongyu Xu
    • 5
  • Min Xu
    • 6
  • Yuetao Wang
    • 2
    Email author
  • Min-Fu Yang
    • 1
    Email author
  1. 1.Department of Nuclear MedicineBeijing Chaoyang Hospital, Capital Medical UniversityBeijingChina
  2. 2.Department of Nuclear MedicineThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
  3. 3.Department of Ultrasound, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
  4. 4.Department of Nuclear Medicine, Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
  5. 5.Department of Pathology, Fuwai Hospital, The National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
  6. 6.Department of EchocardiogramThe Third Affiliated Hospital of Soochow UniversityChangzhouChina

Personalised recommendations