Advertisement

Two-hour postload plasma glucose and pigment epithelium-derived factor levels are markers of coronary artery inflammation in type 2 diabetic patients

  • Nobuhiro TaharaEmail author
  • Yoshikazu Nitta
  • Munehisa Bekki
  • Atsuko Tahara
  • Shoko Maeda-Ogata
  • Yoichi Sugiyama
  • Akihiro Honda
  • Sachiyo Igata
  • Tomohisa Nakamura
  • Jiahui Sun
  • Seiji Kurata
  • Kiminori Fujimoto
  • Toshi Abe
  • Takanori Matsui
  • Sho-ichi Yamagishi
  • Yoshihiro Fukumoto
Original Article
  • 15 Downloads

Abstract

Background

We have previously found that pioglitazone attenuates inflammation in the left main trunk of coronary artery (LMT), evaluated as target-to-background ratio (TBR) by 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) in patients with impaired glucose tolerance or type 2 diabetes.

Objectives

We assessed which clinical variables could predict the change in TBR in the LMT after 4-month add-on therapy with oral hypoglycemic agents (OHAs).

Methods

A total of 38 type 2 diabetic patients with carotid atherosclerosis who had already received OHAs except for pioglitazone was enrolled. At baseline and 4 months after add-on therapy with pioglitazone or glimepiride, all patients underwent 75 g oral glucose tolerance test, blood chemistry analysis, and FDG-PET/CT.

Results

Fasting plasma glucose, 30-, 60-, 90-, 120-minutes postload plasma glucose, HbA1c, and LMT-TBR values were significantly decreased by add-on therapy, whereas high-density lipoprotein-cholesterol and adiponectin levels were increased. Increased serum levels of pigment epithelium-derived factor (PEDF), a marker of insulin resistance and non-use of aspirin at baseline could predict the favorable response of LMT-TBR to add-on therapy. Moreover, Δ120-minutes postload plasma glucose and ΔPEDF were independent correlates of ΔLMT-TBR.

Conclusions

Our present study suggests that 120-minutes postload plasma glucose and PEDF values may be markers and potential therapeutic targets of coronary artery inflammation in type 2 diabetic patients.

Clinical Trial Registration

URL: http://clinicaltrials.gov. Unique identifier: NCT00722631.

Graphic Abstract

New markers for diabetes and CAD is on the horizon! Two-hour postload plasma glucose and pigment epithelium derived factor are markers of coronary artery inflammation in type 2 diabetic patients.

Keywords

Coronary artery inflammation FDG-PET insulin resistance 75 g OGTT PEDF 

Abbreviations

CVD

Cardiovascular disease

CT

Computed tomography

FDG

18F-fluorodeoxyglucose

PET

Positron emission tomography

TBR

Target-to-background ratio

75 g OGTT

75 g oral glucose tolerance test

OHAs

Oral hypoglycemic agents

PEDF

Pigment epithelium-derived factor

LMT

Left main trunk of coronary artery

LMT-TBR

TBR in the LMT

Notes

Acknowledgments

We thank Mami Nakayama, Miho Nakao-Kogure, Katsue Shiramizu, Miyuki Nishikata, Yuri Nishino, Makiko Kiyohiro (Kurume University), and Kouichi Nitta (Hitachi Ltd., Tokyo, Japan) for their technical assistance.

Disclosure

This study was supported in part by research grants from the Kimura Memorial Foundation (to YN, MB, AT, SM, AH and TN), the Grant-in-Aid for Scientific Research C (17K09564 and 17K08968) from the Japan Society for the Promotion of Science (JSPS KAKENHI), Tokyo, Japan (to NT and SY). Yoichi Sugiyama, Sachiyo Igata, Jiahui Sun, Seiji Kurata, Kiminori Fujimoto, Toshi Abe, Takanori Matsui, and Yoshihiro Fukumoto have nothing to disclose.

Supplementary material

12350_2019_1842_MOESM1_ESM.ppt (662 kb)
Supplementary material 1 (PPT 664 kb)

References

  1. 1.
    Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998;339:229-34.CrossRefGoogle Scholar
  2. 2.
    Rao Kondapally Seshasai S, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, Emerging Risk Factors Collaboration, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 2011;364:829-41.CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Laakso M. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 1999;48:937-42.CrossRefGoogle Scholar
  4. 4.
    Prospective Studies Collaboration and Asia Pacific Cohort Studies Collaboration. Sex-specific relevance of diabetes to occlusive vascular and other mortality: A collaborative meta-analysis of individual data from 980793 adults from 68 prospective studies. Lancet Diabetes Endocrinol 2018;6:538-46.CrossRefGoogle Scholar
  5. 5.
    Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: Collaborative analysis of diagnostic criteria in Europe. Lancet 1999;354:617-21.Google Scholar
  6. 6.
    Tominaga M, Eguchi H, Manaka H, Igarashi K, Kato T, Sekikawa A. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care 1999;22:920-4.CrossRefGoogle Scholar
  7. 7.
    Hanefeld M, Fischer S, Julius U, Schulze J, Schwanebeck U, Schmechel H, et al. Risk factors for myocardial infarction and death in newly detected NIDDM: The Diabetes Intervention Study, 11-year follow-up. Diabetologia 1996;39:1577-83.CrossRefGoogle Scholar
  8. 8.
    Abdul-Ghani MA, Jayyousi A, DeFronzo RA, Asaad N, Al-Suwaidi J. Insulin resistance the link between T2DM and CVD: Basic mechanisms and clinical implications. Curr Vasc Pharmacol 2017.  https://doi.org/10.2174/1570161115666171010115119.Google Scholar
  9. 9.
    Di Filippo C, Verza M, Coppola L, Rossi F, D’Amico M, Marfella R. Insulin resistance and postprandial hyperglycemia the bad companions in natural history of diabetes: Effects on health of vascular tree. Curr Diabetes Rev 2007;3:268-73.CrossRefGoogle Scholar
  10. 10.
    Osborn EA, Jaffer FA. Imaging atherosclerosis and risk of plaque rupture. Curr Atheroscler Rep 2013;15:359.CrossRefGoogle Scholar
  11. 11.
    Burke AP, Kolodgie FD, Zieske A, Fowler DR, Weber DK, Varghese PJ, et al. Morphologic findings of coronary atherosclerotic plaques in diabetics: A postmortem study. Arterioscler Thromb Vasc Biol 2004;24:1266-71.CrossRefGoogle Scholar
  12. 12.
    van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994;89:36-44.CrossRefGoogle Scholar
  13. 13.
    Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation 2005;111:3481-8.CrossRefGoogle Scholar
  14. 14.
    Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, CANTOS Trial Group, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017;377:1119-31.CrossRefGoogle Scholar
  15. 15.
    Celeng C, Takx RA, Ferencik M, Maurovich-Horvat P. Non-invasive and invasive imaging of vulnerable coronary plaque. Trends Cardiovasc Med 2016;26:538-47.CrossRefGoogle Scholar
  16. 16.
    Fujino Y, Attizzani GF, Tahara S, Wang W, Takagi K, Naganuma T, et al. Association of skin autofluorescence with plaque vulnerability evaluated by optical coherence tomography in patients with cardiovascular disease. Atherosclerosis 2018;274:47-53.CrossRefGoogle Scholar
  17. 17.
    Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708-11.CrossRefGoogle Scholar
  18. 18.
    Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006;48:1818-24.CrossRefGoogle Scholar
  19. 19.
    Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2006;48:1825-31.CrossRefGoogle Scholar
  20. 20.
    Rudd JH, Myers KS, Bansilal S, Machac J, Rafique A, Farkouh M, et al. (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: Implications for atherosclerosis therapy trials. J Am Coll Cardiol 2007;50:892-6.CrossRefGoogle Scholar
  21. 21.
    Mizoguchi M, Tahara N, Tahara A, Nitta Y, Kodama N, Oba T, et al. Pioglitazone attenuates atherosclerotic plaque inflammation in patients with impaired glucose tolerance or diabetes a prospective, randomized, comparator-controlled study using serial FDG PET/CT imaging study of carotid artery and ascending aorta. JACC Cardiovasc Imaging 2011;4:1110-8.CrossRefGoogle Scholar
  22. 22.
    Rogers IS, Nasir K, Figueroa AL, Cury RC, Hoffmann U, Vermylen DA, et al. Feasibility of FDG imaging of the coronary arteries: Comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imaging 2010;3:388-97.CrossRefGoogle Scholar
  23. 23.
    Nitta Y, Tahara N, Tahara A, Honda A, Kodama N, Mizoguchi M, et al. Pioglitazone decreases coronary artery inflammation in impaired glucose tolerance and diabetes mellitus: Evaluation by FDG-PET/CT imaging. JACC Cardiovasc Imaging 2013;6:1172-82.CrossRefGoogle Scholar
  24. 24.
    Singh P, Emami H, Subramanian S, Maurovich-Horvat P, Marincheva-Savcheva G, Medina HM, et al. Coronary plaque morphology and the anti-inflammatory impact of atorvastatin: A multicenter 18F-fluorodeoxyglucose positron emission tomographic/computed tomographic study. Circ Cardiovasc Imaging 2016;9:e004195.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Honda A, Tahara N, Nitta Y, Tahara A, Igata S, Bekki M, et al. Vascular inflammation evaluated by [18F]-fluorodeoxyglucose-positron emission tomography/computed tomography is associated with endothelial dysfunction. Arterioscler Thromb Vasc Biol 2016;36:1980-8.CrossRefGoogle Scholar
  26. 26.
    Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med 2009;50:1611-20.CrossRefGoogle Scholar
  27. 27.
    Figueroa AL, Abdelbaky A, Truong QA, Corsini E, MacNabb MH, Lavender ZR, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging 2013;6:1250-9.CrossRefGoogle Scholar
  28. 28.
    Moon SH, Cho YS, Noh TS, Choi JY, Kim BT, Lee KH. Carotid FDG uptake improves prediction of future cardiovascular events in asymptomatic individuals. JACC Cardiovasc Imaging 2015;8:949-56.CrossRefGoogle Scholar
  29. 29.
    Yamagishi S, Adachi H, Abe A, Yashiro T, Enomoto M, Furuki K, et al. Elevated serum levels of pigment epithelium-derived factor in the metabolic syndrome. J Clin Endocrinol Metab 2006;91:2447-50.CrossRefGoogle Scholar
  30. 30.
    Nakamura K, Yamagishi S, Adachi H, Kurita-Nakamura Y, Matsui T, Inoue H. Serum levels of pigment epithelium-derived factor (PEDF) are positively associated with visceral adiposity in Japanese patients with type 2 diabetes. Diabetes Metab Res Rev 2009;25:52-6.CrossRefGoogle Scholar
  31. 31.
    Nakamura K, Yamagishi S, Adachi H, Matsui T, Kurita Y, Imaizumi T. Serum levels of pigment epithelium-derived factor (PEDF) are an independent determinant of insulin resistance in patients with essential hypertension. Int J Cardiol 2010;143:96-8.CrossRefGoogle Scholar
  32. 32.
    Chen C, Tso AW, Law LS, Cheung BM, Ong KL, Wat NM, et al. Plasma level of pigment epithelium-derived factor is independently associated with the development of the metabolic syndrome in Chinese men: A 10-year prospective study. J Clin Endocrinol Metab 2010;95:5074-81.CrossRefGoogle Scholar
  33. 33.
    Yang S, Li Q, Zhong L, Song Y, Tian B, Cheng Q, et al. Serum pigment epithelium-derived factor is elevated in women with polycystic ovary syndrome and correlates with insulin resistance. J Clin Endocrinol Metab 2011;96:831-6.CrossRefGoogle Scholar
  34. 34.
    Yamagishi SI, Matsui T. Pigment epithelium-derived factor: A novel therapeutic target for cardiometabolic diseases and related complications. Curr Med Chem 2018;25:1480-500.CrossRefGoogle Scholar
  35. 35.
    Tahara N, Yamagishi S, Tahara A, Nitta Y, Kodama N, Mizoguchi M, et al. Serum level of pigment epithelium-derived factor is a marker of atherosclerosis in humans. Atherosclerosis 2011;219:311-5.CrossRefGoogle Scholar
  36. 36.
    Tahara N, Yamagishi S, Tahara A, Ishibashi M, Hayabuchi N, Takeuchi M, et al. Adiponectin is inversely associated with ratio of serum levels of AGEs to sRAGE and vascular inflammation. Int J Cardiol 2012;158:461-2.CrossRefGoogle Scholar
  37. 37.
    Bucerius J, Hyafil F, Verberne HJ, Slart RH, Lindner O, Sciagra R, Cardiovascular Committee of the European Association of Nuclear Medicine (EANM), et al. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM) on PET imaging of atherosclerosis. Eur J Nucl Med Mol Imaging 2016;43:780-92.CrossRefGoogle Scholar
  38. 38.
    Tahara N, Yamagishi S, Kodama N, Tahara A, Honda A, Nitta Y, et al. Clinical and biochemical factors associated with area and metabolic activity in the visceral and subcutaneous adipose tissues by FDG-PET/CT. J Clin Endocrinol Metab 2015;100:E739-47.CrossRefGoogle Scholar
  39. 39.
    Rask-Madsen C, King GL. Mechanisms of disease: endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab 2007;3:46-56.CrossRefGoogle Scholar
  40. 40.
    McCoy RG, Irving BA, Soop M, Srinivasan M, Tatpati L, Chow L, et al. Effect of insulin sensitizer therapy on atherothrombotic and inflammatory profiles associated with insulin resistance. Mayo Clin Proc 2012;87:561-70.CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, PROactive Investigators, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): A randomised controlled trial. Lancet 2005;366:1279-89.CrossRefGoogle Scholar
  42. 42.
    Seo SM, Kim TH, Kim CJ, Hwang BH, Kang MK, Koh YS, Korean Acute Myocardial Infarction Registry Investigators, et al. Prognostic impact of significant non-infarct-related left main coronary artery disease in patients with acute myocardial infarction who receive a culprit-lesion percutaneous coronary intervention. Coron Artery Dis 2012;23:307-14.CrossRefGoogle Scholar
  43. 43.
    Tombran-Tink J, Chader GG, Johnson LV. PEDF: Pigment epithelium-derived factor with potent neuronal differentiative activity. Exp Eye Res 1991;53:411-4.CrossRefGoogle Scholar
  44. 44.
    Tombran-Tink J, Barnstable CJ. PEDF: A multifaceted neurotrophic factor. Nat Rev Neurosci 2003;4:628-36.CrossRefGoogle Scholar
  45. 45.
    Famulla S, Lamers D, Hartwig S, Passlack W, Horrighs A, Cramer A, et al. Pigment epithelium-derived factor (PEDF) is one of the most abundant proteins secreted by human adipocytes and induces insulin resistance and inflammatory signaling in muscle and fat cells. Int J Obes (Lond) 2011;35:762-72.CrossRefGoogle Scholar
  46. 46.
    Sabater M, Moreno-Navarrete JM, Ortega FJ, Pardo G, Salvador J, Ricart W, et al. Circulating pigment epithelium-derived factor levels are associated with insulin resistance and decrease after weight loss. J Clin Endocrinol Metab 2010;95:4720-8.CrossRefGoogle Scholar
  47. 47.
    Gattu AK, Birkenfeld AL, Jornayvaz F, Dziura J, Li F, Crawford SE, et al. Insulin resistance is associated with elevated serum pigment epithelium-derived factor (PEDF) levels in morbidly obese patients. Acta Diabetol 2012;49(Suppl 1):S161-9.CrossRefGoogle Scholar
  48. 48.
    Sunderland KL, Tryggestad JB, Wang JJ, Teague AM, Pratt LV, Zhang SX, et al. Pigment epithelium-derived factor (PEDF) varies with body composition and insulin resistance in healthy young people. J Clin Endocrinol Metab 2012;97:E2114-8.CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Bucerius J, Mani V, Moncrieff C, Machac J, Fuster V, Farkouh ME, et al. Optimizing 18F-FDG PET/CT imaging of vessel wall inflammation: The impact of 18F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels. Eur J Nucl Med Mol Imaging 2014;41:369-83.CrossRefGoogle Scholar
  50. 50.
    Zhuang HM, Cortés-Blanco A, Pourdehnad M, Adam LE, Yamamoto AJ, Martínez-Lázaro R, et al. Do high glucose levels have differential effect on FDG uptake in inflammatory and malignant disorders? Nucl Med Commun 2001;22:1123-8.CrossRefGoogle Scholar
  51. 51.
    Rabkin Z, Israel O, Keidar Z. Do hyperglycemia and diabetes affect the incidence of false-negative 18F-FDG PET/CT studies in patients evaluated for infection or inflammation and cancer? A Comparative analysis. J Nucl Med 2010;51:1015-20.CrossRefGoogle Scholar
  52. 52.
    Tahara N, Mukherjee J, de Haas HJ, Petrov AD, Tawakol A, Haider N, et al. 2-Deoxy-2-[18F]fluoro-d-mannose positron emission tomography imaging in atherosclerosis. Nat Med 2014;20:215-9.CrossRefGoogle Scholar
  53. 53.
    Tarkin JM, Joshi FR, Evans NR, Chowdhury MM, Figg NL, Shah AV, et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to [18F]FDG PET imaging. J Am Coll Cardiol 2017;69:1774-91.CrossRefPubMedCentralGoogle Scholar
  54. 54.
    Holman RR, Coleman RL, Chan JCN, Chiasson JL, Feng H, Ge J, et al. Effects of acarbose on cardiovascular and diabetes outcomes in patients with coronary heart disease and impaired glucose tolerance (ACE): A randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2017;5:877-86.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2019

Authors and Affiliations

  • Nobuhiro Tahara
    • 1
    Email author
  • Yoshikazu Nitta
    • 1
  • Munehisa Bekki
    • 1
  • Atsuko Tahara
    • 1
  • Shoko Maeda-Ogata
    • 1
  • Yoichi Sugiyama
    • 1
  • Akihiro Honda
    • 1
  • Sachiyo Igata
    • 1
  • Tomohisa Nakamura
    • 1
  • Jiahui Sun
    • 1
  • Seiji Kurata
    • 2
  • Kiminori Fujimoto
    • 2
  • Toshi Abe
    • 2
  • Takanori Matsui
    • 3
  • Sho-ichi Yamagishi
    • 4
  • Yoshihiro Fukumoto
    • 1
  1. 1.Division of Cardiovascular Medicine, Department of MedicineKurume University School of MedicineKurumeJapan
  2. 2.Department of RadiologyKurume University School of MedicineKurumeJapan
  3. 3.Department of Pathophysiology and Therapeutics of Diabetic Vascular ComplicationsKurume University School of MedicineKurumeJapan
  4. 4.Division of Diabetes, Metabolism, and Endocrinology, Department of MedicineShowa University School of MedicineTokyoJapan

Personalised recommendations