Advertisement

First comparison of performances between the new whole-body cadmium–zinc–telluride SPECT-CT camera and a dedicated cardiac CZT camera for myocardial perfusion imaging: Analysis of phantom and patients

  • Maxime MorelleEmail author
  • Dimitri Bellevre
  • Claude Hossein-Foucher
  • Alain Manrique
  • Alban Bailliez
Original Article

Abstract

Background

Dedicated cardiac Cadmium–zinc–telluride (CZT) cameras show superior performances compared with Anger systems, particularly in terms of spatial resolution and count sensitivity. This study evaluated the performances of a new polyvalent whole body CZT camera (DNM 670CZT) compared with a cardiac dedicated CZT camera (DNM 530c) for myocardial perfusion SPECT.

Methods

The spatial resolution was evaluated with three linear sources filled with 99mTc. We used a cardiac phantom to evaluate count sensitivity, sharpness index, contrast-to-noise ratio, wall thickness, non-uniformity index, perfusion scores and ventricle volumes for both cameras. The impact of matrix size, and acquisition time was investigated. Concordance between the two cameras was evaluated in patients using QPS/QGS software for quantitative segmental perfusion, motion and thickness scores.

Results

The spatial resolution was identical with the two cameras. Count sensitivity of the DNM 670CZT was twofold lower compared with the DNM 530c, leading to lower sharpness index and contrast-to-noise ratio. The wall thickness and the myocardial volumes were similar. Visual and quantitative assessments of the perfusion patterns have shown a good concordance of the two cameras on phantoms and in patients.

Conclusion

This study demonstrated the feasibility of myocardial perfusion SPECT imaging using the new whole-body DNM 670CZT camera.

Keywords

CZT-cameras myocardial perfusion imaging SPECT 

Abbreviations

CT

Computed tomography

CZT

Cadmium–zinc–telluride

EDV

End diastolic volume

ESV

End systolic volume

FWHM

Full width at half maximum

LVEF

Left ventricle ejection fraction

MPI

Myocardial perfusion imaging

OSEM

Ordered subset expectation maximization

SPECT

Single-photon emission computerized tomography

SD

Standard deviation

Notes

Acknowledgments

We thank Pierre-François Quique and all the nuclear medicine technicians at Lille for their valuable support.

Disclosures

No conflict of interest relevant to this article was reported.

Supplementary material

12350_2019_1702_MOESM1_ESM.ppt (1.7 mb)
Supplementary material 1 (PPT 1774 kb)

References

  1. 1.
    Blaire T, Bailliez A, Bouallegue FB, Bellevre D, Agostini D, Manrique A. Left ventricular function assessment using 123I/99mTc dual-isotope acquisition with two semi-conductor cadmium–zinc–telluride (CZT) cameras: A gated cardiac phantom study. EJNMMI Phys 2016;3:1-11.CrossRefGoogle Scholar
  2. 2.
    Bailliez A, Blaire T, Mouquet F, Legghe R, Etienne B, Legallois D, et al. Segmental and global left ventricular function assessment using gated SPECT with a semiconductor Cadmium Zinc Telluride (CZT) camera: Phantom study and clinical validation vs cardiac magnetic resonance. J Nucl Cardiol 2014;21:712-22.CrossRefGoogle Scholar
  3. 3.
    Gambhir SS, Berman DS, Ziffer J, Nagler M, Sandler M, Patton J, et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med 2009;50:635-43.CrossRefGoogle Scholar
  4. 4.
    Erlandsson K, Kacperski K, van Gramberg D, Hutton BF. Performance evaluation of D-SPECT: A novel SPECT system for nuclear cardiology. Phys Med Biol 2009;54:2635-49.CrossRefGoogle Scholar
  5. 5.
    Bellevre D, Manrique A, Legallois D, Bross S, Baavour R, Roth N, et al. First determination of the heart-to-mediastinum ratio using cardiac dual isotope (123I-MIBG/99mTc-tetrofosmin) CZT imaging in patients with heart failure: The ADRECARD study. Eur J Nucl Med Mol Imaging 2015;42:1912-9.CrossRefGoogle Scholar
  6. 6.
    Verger A, Djaballah W, Fourquet N, Rouzet F, Koehl G, Imbert L, et al. Comparison between stress myocardial perfusion SPECT recorded with cadmium-zinc-telluride and Anger cameras in various study protocols. Eur J Nucl Med Mol Imaging 2013;40:331-40.CrossRefGoogle Scholar
  7. 7.
    Kroiss AS, Nekolla SG, Dobrozemsky G, Grubinger T, Shulkin BL, Schwaiger M. CT-based SPECT attenuation correction and assessment of infarct size: Results from a cardiac phantom study. Ann Nucl Med 2017;31:764-72.CrossRefGoogle Scholar
  8. 8.
    Mouden M, Timmer JR, Ottervanger JP, Reiffers S, Oostdijk AHJ, Knollema S, et al. Impact of a new ultrafast CZT SPECT camera for myocardial perfusion imaging: Fewer equivocal results and lower radiation dose. Eur J Nucl Med Mol Imaging 2012;39:1048-55.CrossRefGoogle Scholar
  9. 9.
    Duvall WL, Croft LB, Ginsberg ES, Einstein AJ, Guma KA, George T, et al. Reduced isotope dose and imaging time with a high-efficiency CZT SPECT camera. J Nucl Cardiol 2011;18:847-57.CrossRefGoogle Scholar
  10. 10.
    Takahashi Y, Miyagawa M, Nishiyama Y, Ishimura H, Mochizuki T. Performance of a semiconductor SPECT system: Comparison with a conventional Anger-type SPECT instrument. Ann Nucl Med 2013;27:11-6.CrossRefGoogle Scholar
  11. 11.
    Imbert L, Poussier S, Franken PR, Songy B, Verger A, Morel O, et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: A comprehensive analysis of phantom and human images. J Nucl Med 2012;53:1897-903.CrossRefGoogle Scholar
  12. 12.
    Zeintl J, Vija AH, Chapman JT, Hawman EG, Hornegger J. Quantifying the effects of acquisition parameters in cardiac SPECT imaging and comparison with visual observers. IEEE 2006;6:3251-7.Google Scholar
  13. 13.
    Xu Y, Hayes S, Ali I, Ruddy TD, Wells RG, Berman DS, et al. Automatic and visual reproducibility of perfusion and function measures for myocardial perfusion SPECT. J Nucl Cardiol 2010;17:1050-7.CrossRefGoogle Scholar
  14. 14.
    Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: Design, system validation and future potential. Eur J Nucl Med Mol Imaging 2010;37:1887-902.CrossRefGoogle Scholar
  15. 15.
    Segall G, Davis M. Prone versus supine thallium myocardial SPECT: A method to decrease artifactual inferior wall defects. J Nucl Med 1989;30:548-55.Google Scholar
  16. 16.
    DePuey E. how to detect and avoid myocardial perfusion SPECT artifacts. J Nucl Med 1994;35:699-702.Google Scholar
  17. 17.
    Buechel RR, Herzog BA, Husmann L, Burger IA, Pazhenkottil AP, Treyer V, et al. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: First clinical validation. Eur J Nucl Med Mol Imaging 2010;37:773-8.CrossRefGoogle Scholar
  18. 18.
    Hindorf C, Oddstig J, Hedeer F, Hansson MJ, Jögi J, Engblom H. Importance of correct patient positioning in myocardial perfusion SPECT when using a CZT camera. J Nucl Cardiol 2014;21:695-702.CrossRefGoogle Scholar
  19. 19.
    Fiechter M, Gebhard C, Fuchs TA, Ghadri JR, Stehli J, Kazakauskaite E, et al. Cadmium-Zinc-Telluride myocardial perfusion imaging in obese patients. J Nucl Med 2012;53:1401-6.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2019

Authors and Affiliations

  • Maxime Morelle
    • 1
    Email author
  • Dimitri Bellevre
    • 2
  • Claude Hossein-Foucher
    • 1
  • Alain Manrique
    • 3
    • 4
  • Alban Bailliez
    • 2
    • 3
    • 5
  1. 1.Nuclear Medicine DepartmentHôpital Roger Salengro, CHRU-Lille, Universit de Lille 2LilleFrance
  2. 2.Nuclear Medicine DepartmentIRIS, Hôpital Privé Le BoisLilleFrance
  3. 3.Normandie Univ, UNICAEN, Signalisation, électrophysiologie et imagerie des lésions d’ischémie-reperfusion myocardique, FHU REMOD-VHFCaenFrance
  4. 4.Nuclear Medicine, CHU de CaenCaenFrance
  5. 5.Department of Nuclear MedicineUF 5881, Groupement des Hôpitaux de l’Institut Catholique de LilleLommeFrance

Personalised recommendations