Nuclear cardiology in the context of multimodality imaging to detect cardiac toxicity from cancer therapeutics: Established and emerging methods

  • Aaron SouferEmail author
  • Chi Liu
  • Mariana L. Henry
  • Lauren A. Baldassarre
Review Article


The complexity of cancer therapies has vastly expanded in the last decade, along with type and severity of cardiac toxicities associated with these treatments. Prevention of pre-clinical cardiotoxicity may improve cardiovascular outcomes and circumvent the decision to place life-sustaining chemotherapeutic agents on hold, making the early detection of cancer therapeutic related cardiac toxicity with non-invasive imaging essential to the care of these patients. There are several established methods of cardiac imaging in the areas of nuclear cardiology, echocardiography, computed tomography, and cardiac magnetic resonance imaging that are used to assess for cardiovascular toxicity of cancer treatments, with several methods under development. The following review will provide an overview of current and emerging imaging techniques in these areas.


Multimodality cardiac imaging  cardiotoxicity  cardio-oncology  cancer therapeutics related cardiac dysfunction  



This work is supported in part by NIH Grant R01HL123949.


Aaron Soufer, Mariana L. Henry, Lauren A. Baldassarre have nothing to disclose. Chi Liu supported by Philips Healthcare and Siemens Medical Solutions.

Supplementary material

12350_2019_1671_MOESM1_ESM.pptx (2.8 mb)
Supplementary material 1 (PPTX 2880 kb)


  1. 1.
    United States Cancer Statistics | Cancer | CDC. In: Centers for Disease Control and Prevention. Accessed 23 Jan 2019.
  2. 2.
    Varricchi G, Ameri P, Cadeddu C, Ghigo A, Madonna R, Marone G, et al. Antineoplastic Drug-Induced Cardiotoxicity: A Redox Perspective. Front Physiol 2018;9:167.CrossRefGoogle Scholar
  3. 3.
    Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2014;27:911-39.CrossRefGoogle Scholar
  4. 4.
    Guglin ME, Krischer J, Tamura R, Fink A, Bello L, Munster P, et al. 405-14- Lisinopril or Carvediol for Prevention of Trastuzumab Induced Cardiotoxicity. ACC 67th Annual Scientific Session 2018.Google Scholar
  5. 5.
    Ewer MS, Ali MK, Mackay B, et al. A comparison of cardiac biopsy grades and ejection fraction estimations in patients receiving Adriamycin. J Clin Oncol 1984;2:112-7.CrossRefGoogle Scholar
  6. 6.
    Felker M, Thompson R, Hare J. Underlying Causes of Cardiomyopathy and Long Term Survival in Patients with Initially Unexplained Cardiomyopathy. N Engl J Med 2000;342:1077-84.CrossRefGoogle Scholar
  7. 7.
    Otterstad JE, Froeland G, St John Sutton M, et al. Accuracy and reproducibility of biplane two-dimensional echocardiographic measurements of left ventricular dimensions and function. Eur Heart J 1997;18:507-13.Google Scholar
  8. 8.
    Farsalinos KE, Daraban AM, Ünlü S, Thomas JD, Badano LP, Voigt JU. Head-to-head comparison of global longitudinal strain measurements among nine different vendors: the EACVI/ASE Inter-Vendor Comparison Study. J Am Soc Echocardiogr 2015;28:1171-81.CrossRefGoogle Scholar
  9. 9.
    Pellikka PA, She L, Holly TA, Lin G, Varadarajan P, Pai RG, et al. Variability in ejection fraction measured by echocardiography, gated single-photon Emission Computed Tomography, and Cardiac Magnetic Resonance in Patients With Coronary Artery Disease and Left Ventricular Dysfunction. JAMA Netw Open 2018;1:e181456.CrossRefGoogle Scholar
  10. 10.
    Neilan TG, Jassal DS, Perez-Sanz TM, Raher MJ, Pradhan AD, Buys ES, et al. Tissue Doppler imaging predicts left ventricular dysfunction and mortality in a murine model of cardiac injury. Eur Heart J 2006;27:1868-75.CrossRefGoogle Scholar
  11. 11.
    Alexander J, Dainiak N, Berger HJ et al. Serial Assessment of docxorubicin cardiotoxicty with quantitative radionuclide angiography. NEJM 1979;300:278-83.Google Scholar
  12. 12.
    Choi BW, Berger HJ, Schwartz PE, Alexander J, Wackers FJ, Gottschalk A, et al. Serial radionuclide assessment of doxorubicin cardiotoxicity in can- cer patients with abnormal baseline resting left ventricular performance. Am Heart J 1983;106:638-43.CrossRefGoogle Scholar
  13. 13.
    Royen NV, Jaffe CC, Krumholz HM, et al. Comparison and reproducibility of visual echocardiographic and quantitative radionyclide left ventricular ejection fractions. Am J Cardiol 1996;77:843-50.CrossRefGoogle Scholar
  14. 14.
    Russell RR, Alexander J, Jain D, Poornima IG, Srivastava AV, Storozynsky E, et al. The role and clinical effectiveness of multimodality imaging in the management of cardiac complications of cancer and cancer therapy. J Nucl Cardiol 2016;23:856-84.CrossRefGoogle Scholar
  15. 15.
    Jensen MM, Schmidt U, Huang C, Zerahn B. Gated tomographic radionuclide angiography using cadmium-zinc-telluride detector gamma camera; comparison to traditional gamma cameras. J Nucl Cardiol 2014;21:384-96.CrossRefGoogle Scholar
  16. 16.
    Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18:1440-63.CrossRefGoogle Scholar
  17. 17.
    Jacobs LD, Salgo IS, Goonewardena S, Weinert L, Coon P, Bardo D, et al. Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. Eur Heart J 2006;27:460-8.CrossRefGoogle Scholar
  18. 18.
    Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popovic ZB, Marwick TH. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J Am Coll Cardiol 2013;61:77-84.CrossRefGoogle Scholar
  19. 19.
    Ylanen K, Poutanen T, Savikurki-Heikkila, et al. Cardiac Magnetic Resonance Imaging in the Evaluation of Late Effects of Anthacyclines Among Long-Term Survivors of Childhood Cancer. J Am Coll Cardiol 2013; 61: 1539-1547.Google Scholar
  20. 20.
    Walker J, Bhullar N, Fallah-Rad N, Lytwyn M, Golian M, Fang T, et al. Role of three-dimensional echocardiography in breast cancer: comparison with two-dimensional echocardiography, multiple-gated acquisition scans, and cardiac magnetic resonance imaging. J Clin Oncol 2010;28:3429-36.CrossRefGoogle Scholar
  21. 21.
    Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol 2014;63:2751-68.CrossRefGoogle Scholar
  22. 22.
    Jolly MP, Jordan JH, Melendez GC, McNeal GR, D’Agostino RB Jr, Hundley WG. Automated assessments of circumferential strain from cine CMR correlate with LVEF declines in cancer patients early after receipt of cardio-toxic chemotherapy. J Cardiovasc Magn Reson 2017;19:59.CrossRefGoogle Scholar
  23. 23.
    Drafts BC, Twomley KM, D’Agostino R Jr, Lawrence J, Avis N, Ellis LR, et al. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging 2013;6:877-85.CrossRefGoogle Scholar
  24. 24.
    Aletras AH, Ding S, Balaban RS, Wen H, et al. DENSE: Displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson 1999;137:247-52.CrossRefGoogle Scholar
  25. 25.
    Giusca S, Korosoglou G, Zieschang V, et al. Reproducibility study on myocardial strain assessment using fast-SENC cardiac magnetic resonance imaging. Sci Rep 2018;8.Google Scholar
  26. 26.
    Aggarwal A, Brown KA, LeWinter MM. Diastolic dysfunction: pathophysiology, clinical features, and assessment with radionuclide methods. J Nucl Cardiol 2001;8:98-106.CrossRefGoogle Scholar
  27. 27.
    Bountioukos M, Doorduijn JK, Roelandt JR, Vourvouri EC, Bax JJ, Schinkel AF, et al. Repetitive dobutamine stress echocardiography for the prediction of anthracycline cardiotoxicity. Eur J Echocardiogr 2003;4:300-5.CrossRefGoogle Scholar
  28. 28.
    De Ville de Goyet M, Brichard B, Robert A, Renard L, Veyckemans F, et al. Prospective cardiac MRI for the analysis of biventricular function in children undergoing cancer treatments.. Ped Blood Canc 2015;62:867-74.Google Scholar
  29. 29.
    Harrison A, Damal K, Burgon NS, Haslam MM, Glenn M, et al. Left atrial late gadolinium enhancement following external beam radiation for lymphoma: a potential model for exploring radiation-related heart disease. J Cardiovasc Magn Reson 2012: 187.Google Scholar
  30. 30.
    Huang Huang YJ, Sarkar V, Rassiah SP, Zhao H, Szegedi M, et al. Detection of late radiation damage on left atrial fibrosis using cardiac late gadolinium enhancement magnetic resonance imaging. Adv Radiat Oncol 2016;1:106-14.CrossRefGoogle Scholar
  31. 31.
    Neilan TG, Coelho-Filho OR, Shah RV, Feng JH, Pena-Herrera D, Mandry D, et al. Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy. Am j cardiol 2013;111:717-22.CrossRefGoogle Scholar
  32. 32.
    Lehenbauer K, Kalisz K, Freed BH, Bi X, Guetter C, Jolly MP, et al. Quantitative cardiac MR assessment of left ventricular diastology. J Cardiovasc Magn Reson 2013;15:P27.CrossRefGoogle Scholar
  33. 33.
    Desai MY, Jellis CL, Kotecha R, et al. Radiation-associated cardiac disease: A practical approach to diagnosis and management. JACC Cardiovasc Imaging 2018;11:1132-49.CrossRefGoogle Scholar
  34. 34.
    van Nimwegen FA, Schaapveld M, Janus CP, et al. Cardiovascular disease after Hodgkin lymphoma treatment: 40-year disease risk. JAMA Intern Med 2015;175:1007-17.CrossRefGoogle Scholar
  35. 35.
    Darby SC, Ewertz M, McGale P, et al. Risk of Ischemic Heart Disease in Women after Radiotherapy for Breast Cancer. N Engl J Med 2013;368:987-99.CrossRefGoogle Scholar
  36. 36.
    Kupel S, Hazirolan T, Varan A, et al. Evaluation of coronary artery disease by computed tomography angiography in patients treated for childhood Hodgkin’s lymphoma. J Clin Oncol 2010;28:1025-30.CrossRefGoogle Scholar
  37. 37.
    Takx RAP, Vliegenhert R, Schoepf UJ, et al. Coronary artery calcium in breast cancer survivors after radiation therapy. Int J Cardiovasc Imaging 2017;33(9):1425-31.CrossRefGoogle Scholar
  38. 38.
    Marks LB, Yu X, Prosnitz RG, et al. The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys 2005;63:214-23.CrossRefGoogle Scholar
  39. 39.
    Gayed I, Gohar S, McAleer M, et al. The clinical implications of myocardial perfusion abnormalities in patients with esophageal or lung cancer after chemoradiation therapy. Int J Cardiovasc Imaging 2009;25:487-95.CrossRefGoogle Scholar
  40. 40.
    Heidenreich PA, Schnittger I, Strauss HW, et al. Screening for coronary artery disease after mediastinal irradiation for Hodgkin’s disease. J Clin Oncol 2007;25:43-9.CrossRefGoogle Scholar
  41. 41.
    Boden WE, O’rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ et al. Optimal medical therapy with or without PCI for stable coronary disease. New Engl J Med 2007;356:1503-16.Google Scholar
  42. 42.
    Lancellotti P, Nkomo VT, Badano LP, et al. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging 2013;14:721-40.CrossRefGoogle Scholar
  43. 43.
    Coronary CTA for Radiation Therapy Planning in Lymphoma Patients. Mayo Clinic. Published September 28, 2017. Accessed January 21, 2019.
  44. 44.
    Bogaert J, Francone M. Cardiovascular magnetic resonance in pericardial diseases. J Cardiovasc Magn Reson 2009;11:14.CrossRefGoogle Scholar
  45. 45.
    Pepine CJ, Anderson RD, Sharaf BL, Reis SE, Smith KM, Handberg EM, et al. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women’s Ischemia Syndrome Evaluation) study. J Am Coll Cardiol 2010;55:2825-32.CrossRefGoogle Scholar
  46. 46.
    Gould KL, Johnson NP, Bateman TM, Beanlands RS, Bengel FM, Bober R et al. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol 2013;62:1639-53.Google Scholar
  47. 47.
    Danad I, Raijmakers PG, Appelman YE, Harms HJ, de Haan S, van den Oever ML, et al. Hybrid imaging using quantitative H215O PET and CT-based coronary angiography for the detection of coronary artery disease. J Nucl Med 2013;54:55-63.CrossRefGoogle Scholar
  48. 48.
    Hamirani YS, Kramer CM. Cardiac MRI assessment of myocardial perfusion. Fut Cardiol 2014;10:349.CrossRefGoogle Scholar
  49. 49.
    Laursen A, Thune J, Køber L, et al. Preliminary results for a multimodality imaging approach for early detection and prediction of cardiotoxicity in doxorubicin-treated patients with malignant lymphoma. Hematol Oncol 2017;35:356-7.CrossRefGoogle Scholar
  50. 50.
    Nehmeh S, Fox J, Schwartz J, Ballangrud A, Schoder H, Strauss H,. Value of Cardiac 13N-Ammonia PET in Assessing Early Radiation-Induced Cardiotoxicity in Breast Cancer Patients Undergoing Radiotherapy: A Feasibility Study. J Nucl Med 2017;58:517.Google Scholar
  51. 51.
    Sen F, Yildiz I, Basaran M. Impaired coronary flow reserve in metastatic cancer patients treated with sunitinib. J Balkan Union Oncol 2013;18:775-81.Google Scholar
  52. 52.
    Mohy-Ud-Din H, Boutagy NE, Stendahl JC, Zhuang ZW, Sinusas AJ, Liu C. Quantification of intramyocardial blood volume with (99m)Tc-RBC SPECT-CT imaging: A preclinical study. J Nucl Cardiol 2018;25:2096-111.CrossRefGoogle Scholar
  53. 53.
    Jain V, Bahia J, Mohebtash M, Barac A. Cardiovascular Complications Associated With Novel Cancer Immunotherapies. Curr Treat Options Cardio Med 2017;19:36.CrossRefGoogle Scholar
  54. 54.
    Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discovery. 2015;14:561-84.CrossRefGoogle Scholar
  55. 55.
    Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, Hicks M, Puzanov I, Alexander MR, Bloomer TL, Becker JR, Slosky DA, Phillips EJ, Pilkinton MA, Craig-Owens L, et al. Fulminant Myocarditis with Combination Immune Checkpoint Blockade. The New England journal of medicine. 2016;375:1749-55.CrossRefGoogle Scholar
  56. 56.
    Mahmood SS, Fradley MG, Cohen JV, et al. Myocarditis in Patients Treated with Immune Checkpoint Inhibitors. J Am Coll Cardiol 2018;71:1755-64.CrossRefGoogle Scholar
  57. 57.
    Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, et al. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol 2009;53(17):1475-87.CrossRefGoogle Scholar
  58. 58.
    Freidrich MG; Marcotte F. Cardiac Magnetic Resonance Assessment of Myocarditis. Circulation Cardiac Imaging 2013;6:833-9.Google Scholar
  59. 59.
    Ferreira VM, Schulz-Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol 2018;72:3158-76.CrossRefGoogle Scholar
  60. 60.
    Soufer, A, Higgins A, Baldassarre, L. Quantitative analysis of T2 imaging may identify global edema in patients referred for immune checkpoint inhibitor cardiomyopathy. 2019 Society of Cardiovascular Magnetic Resonance Scientific Sessions abstract.Google Scholar
  61. 61.
    Bu D-X, Tarrio M, Maganto-Garcia E, Stavrakis G, Tajima G, Lederer J, Jarolim P, Freeman GJ, Sharpe AH, Lichtman AH. Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation. Arterioscler Thromb Vasc Biol 2011;31:1100-7.CrossRefGoogle Scholar
  62. 62.
    Werner RA, Wakabayashi H, Bauer J, Schütz C, Zechmeister C, Hayakawa N, Javadi MS, Lapa C, Jahns R, Ergün S, Jahns V. Longitudinal 18F-FDG PET imaging in a rat model of autoimmune myocarditis. Eur Heart J-Cardiovasc Imaging 2018.Google Scholar
  63. 63.
    Tarrio ML, Grabie N, Bu D-X, et al. PD-1 Protects against Inflammation and Myocyte Damage in T Cell-Mediated Myocarditis. J Immunol 2012;188:4876-84.CrossRefGoogle Scholar
  64. 64.
    Broos K, Lecocq Q, Raes G, et al. Noninvasive imaging of the PD-1:PD-L1 immune checkpoint: Embracing nuclear medicine for the benefit of personalized immunotherapy. Theranostics 2018;8:3559-70.CrossRefGoogle Scholar
  65. 65.
    Mukhopadhyay P, Rajesh M, Batkai S, et al. Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am J Physiol Heart Circ Physiol 2009;296:H1466-83.CrossRefGoogle Scholar
  66. 66.
    Wang S, Kotamraju S, Konorev E, Kalivendi S, Joseph J, Kalyanaraman B. Activation of nuclear factor-kappaB during doxorubicin-induced apoptosis in endothelial cells and myocytes is pro-apoptotic: the role of hydrogen peroxide. Biochem J 2002;367:729-40.CrossRefGoogle Scholar
  67. 67.
    Polegato BF, Minicucci MF, Azevedo PS, et al. Acute doxorubicin-induced cardiotoxicity is associated with matrix metalloproteinase-2 alterations in rats. Cell Physiol Biochem 2015;35:1924-33.CrossRefGoogle Scholar
  68. 68.
    Ivanova M, Dovinova I, Okruhlicova L, et al. Chronic cardiotoxicity of doxorubicin involves activation of myocardial and circulating matrix metalloproteinases in rats. Acta Pharmacol Sin 2012;33:459-69.CrossRefGoogle Scholar
  69. 69.
    Chu W, Chepetan A, Zhou D, et al. Develop- ment of a PET radiotracer for non-invasive imaging of the reactive oxygen species, superoxide, in vivo. Org Biomol Chem 2014;12:4421-31.CrossRefGoogle Scholar
  70. 70.
    Zhang W, Cai Z, Li L, et al. Optimized and automated radiosynthesis of [18F] DHMT for translational imaging of reactive oxygen species with positron emission tomography. Molecules 2016;21:1696.CrossRefGoogle Scholar
  71. 71.
    Boutagy N, Wu J, Cai Z, et al. In Vivo Reactive Oxygen Species Detection With a Novel Positron Emission Tomography Tracer, 18F-DHMT, Allows for Early Detection of Anthracycline-Induced Cardiotoxicity in Rodents. JACC Basic Transl Sci 2018;3:378-90.CrossRefGoogle Scholar
  72. 72.
    Bennink RJ, van den Hoff MJ, van Hemert FJ, de Bruin KM, Spijkerboer AL, Vanderheyden JL, et al. Annexin V imaging of acute doxorubicin cardiotoxicity (apoptosis) in rats. J Nucl Med 2004;45:842-8.Google Scholar
  73. 73.
    Valdes OR, Carrio I, Hoefnagel CA, et al. High sensitivity of radiolabelled antimyosin scintigraphy in assessing anthracycline related early myocyte damage preceding cardiac dysfunction. Nucl Med Commun 2002;23:871-7.CrossRefGoogle Scholar
  74. 74.
    Su H, Gorodney N, Gomez LF, Gangadharmath U, et al. Noninvasive molecular imaging of apoptosis in a mouse model of anthracycline-induced cardiotoxicity. Circ Cardiovasc Imaging 2015;8:e001952.CrossRefGoogle Scholar
  75. 75.
    Bauckneht M, Ferrarazzo G, Fiz F, et al. Doxorubicin Effect on Myocardial Metabolism as a Prerequisite for Subsequent Development of Cardiac Toxicity: A Translational 18F-FDG PET/CT Observation. J Nucl Med 2017;58:1638-45.CrossRefGoogle Scholar
  76. 76.
    Kim J, Park KS, Jeong GC, Cho SG, Kang SR, Jang KS, Kwon SY, Min JJ, Song HC, Bom HS. Routine oncologic FDG PET/CT may be useful for evaluation of cancer therapy-induced cardiotoxicity. J Nucl Med 2014;55:1549-.Google Scholar
  77. 77.
    Jingu K, Kaneta T, Nemoto K, Ichinose A, Oikawa M, Takai Y, Ogawa Y, Nakata E, Sakayauchi T, Takai K, Sugawara T. The utility of 18F-fluorodeoxyglucose positron emission tomography for early diagnosis of radiation-induced myocardial damage. Int J Rad Oncol Biol Phys 2006;66:845-51.Google Scholar
  78. 78.
    Evans JD, Gomez DR, Chang GW, et al. Cardiac 18F-fluorodeoxyglucose uptake on positron emission tomography after thoracic stereotactic body radiation therapy Radiother Oncol 109 (2013), pp. 82-8Google Scholar
  79. 79.
    El‐Sherif O, Xhaferllari I, Sykes J, Butler J, Battista J, Wisenberg G, et al. WE‐FG‐202‐06: The Use of Hybrid PET MRI for Identifying the Presence of Cardiac Inflammation Following External Beam Irradiation. Med Phys 2016;43:3828-.Google Scholar
  80. 80.
    Carrio I, Cowie MR, Yamazaki J, et al. Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovasc Imaging 2010;3:92-100.CrossRefGoogle Scholar
  81. 81.
    Valdes Olmos RA, ten Bokkel Huinink WW, ten Hoeve RF, et al. Assessment of anthracycline-related myocardial adrenergic derangement by [123I]metaiodobenzylguanidine scintigraphy. Eur J Cancer 1995;31A:26-31.CrossRefGoogle Scholar
  82. 82.
    Jeon TJ, Lee JD, Ha JW et al. Evaluation of cardiac adrenergic neuronal damage in rats with doxorubicin-induced cardiomyopathy using iodine-131 BG autoradiography and PGP 9.5 immunohistochemistry. Eur J Nucl Med 2000; 27:686-693Google Scholar
  83. 83.
    Wakasugi S, Fischman AJ, Babich JW, et al. Metaiodobenzylguanidine: evaluation of its potential as a tracer for monitoring doxorubicin cardiomyopathy. J Nucl Med 1993;34:1283-6.Google Scholar
  84. 84.
    Bulten BF, Verberne HJ, Bellersen L, et al. Relationship of promising methods in the detection of anthracycline-induced cardiotoxicity in breast cancer patients. Cancer Chemother Pharmacol 2015;76:957-67.CrossRefGoogle Scholar
  85. 85.
    Fallah-Rad N, Walker JR, Wassef A, et al. The Utility of Cardiac Biomarkers, Tissue Velocity and Strain Imaging, and Cardiac Magnetic Resonance Imaging in Predicting Early Left Ventricular Dysfunction in Patients With Human Epidermal Growth Factor Receptor II-Positive Breast Cancer Treated With Adjuvant Trastuzumab Therapy. J Am Coll Cardiol 2011;57:2263-70.CrossRefGoogle Scholar
  86. 86.
    Neilan TG, Coelho-Filho OR, Pena-Herrera D, et al. Left Ventricular Mass in Patients With a Cardiomyopathy After Treatment With Anthracyclines. Am J Cardiol 2012;110:1679-86.CrossRefGoogle Scholar
  87. 87.
    Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, et al. Myocardial t1 mapping and extracellular volume quantification: A society for cardiovascular magnetic resonance (scmr) and cmr working group of the european society of cardiology consensus statement. J Cardiovasc Magn R 2013;15Google Scholar
  88. 88.
    Jordan J, Vasu S, Morgan TM et al. Anthracycline-Associated T1 Mapping Characteristics Are Elevated Independent of the Presence of Cardiovascular Comorbidities in Cancer Survivors. Circ Cardiovasc Imaging 2016;9:e004325.Google Scholar
  89. 89.
    Kurita Y, Kitagawa K, Kurobe Y, et al. Estimation of myocardial extracellular volume fraction with cardiac CT in subjects without clinical coronary artery disease: A feasibility study. J Cardiovasc Comput Tomogr 2016;10:237-41.CrossRefGoogle Scholar
  90. 90.
    Kumar V, Mcelhanon KE, Min JK, et al. Non-contrast estimation of diffuse myocardial fibrosis with dual energy CT: A phantom study. J Cardiovasc Comput Tomogr 2018;12:74-80.CrossRefGoogle Scholar
  91. 91.
    Gallegos C, Rottmann D, Nguyen VQ, Baldassarre LA. Myocarditis with checkpoint inhibitor immunotherapy: Case report of late gadolinium enhancement on cardiac magnetic resonance with pathology correlate. Eur Heart J Case Rep 2019. Scholar

Copyright information

© American Society of Nuclear Cardiology 2019

Authors and Affiliations

  • Aaron Soufer
    • 1
    Email author
  • Chi Liu
    • 2
  • Mariana L. Henry
    • 1
  • Lauren A. Baldassarre
    • 1
  1. 1.Department of Cardiovascular MedicineYale University School of MedicineNew HavenUSA
  2. 2.Department of Radiology and Biomedical EngineeringYale University School of MedicineNew HavenUSA

Personalised recommendations