Advertisement

Patient-specific SPECT imaging protocols to standardize image noise

  • Sarah G. Cuddy-WalshEmail author
  • Duncan C. Clackdoyle
  • Jennifer M. Renaud
  • R. Glenn Wells
Original Article

Abstract

Background

In addition to acquired photon counts, image noise depends on the image reconstruction algorithm. This work develops patient-specific activity or acquisition time protocols to standardize the average noise in a reconstructed image for different patients, cameras, and reconstruction algorithms.

Methods

Image noise was calculated for images from 43 patients acquired on both a conventional and a multiple-pinhole cardiac SPECT camera. Functions were found to relate image noise to radiotracer activity, scan time, and body mass and were validated by normalizing the image noise in a test set of 58 patients.

Results

There was a 3.6-fold difference in photon sensitivity between the two cameras but a 16-fold difference in activity-scan time was necessary to match the noise levels. Image noise doubled from 45 to 128 kg for the conventional camera (12.8 minutes) and tripled for the multiple-pinhole camera (5 minutes) for 350 MBq (9.5 mCi) 99mTc-tetrofosmin. It was 16.3% and 6.1% respectively for an average sized patient.

Conclusions

A linear scaling of activity with respect to the patient weight normalizes image noise but the scaling factors depend on the choice of camera and image reconstruction parameters. Therefore, equivalent numbers of acquired photon counts are not sufficient to guarantee equivalent image noise.

Keywords

SPECT myocardial perfusion imaging activity image noise patient-centered imaging 

Abbreviations

AC

Attenuation corrected

AT

Decay-corrected activity-scan time protocol

DNM530c

GE discovery NM530c SPECT camera

MAP-EM

Maximum a posteriori expectation maximization

MPI

Myocardial perfusion imaging

NC

Non-attenuation corrected

OSEM

Ordered-subset expectation maximization

OSLG

One-step-late Green’s prior

FOV

Field-of-view

SPECT

Single photon emission computed tomography

Notes

Disclosure

J. M. Renaud is a consultant for Jubliant DraxImage Inc. and receives royalties for software sales from FlowQuant and Invia Medical Imaging Solutions. R. G. Wells receives research support and honoraria from GE Healthcare for speaking at meetings. S. G. Cuddy-Walsh and D. C. Clackdoyle have nothing to disclose.

Supplementary material

12350_2019_1664_MOESM1_ESM.pdf (192 kb)
Supplementary material 1 (PDF 192 kb)
12350_2019_1664_MOESM2_ESM.pptx (629 kb)
Supplementary material 2 (PPTX 628 kb)

References

  1. 1.
    Dorbala S, Ananthasubramaniam K, Armstrong IS, Chareonthaitawee P, DePuey EG, Einstein AJ, et al. Single photon emission computed tomography (SPECT) myocardial perfusion imaging guidelines: Instrumentation, acquisition, processing, and interpretation. J Nucl Cardiol 2018;25:1784.CrossRefGoogle Scholar
  2. 2.
    van Dijk JD, Jager PL, Ottervanger JP, Slump CH, de Boer J, Oostdijk AH, et al. Minimizing patient-specific tracer dose in myocardial perfusion imaging using CZT SPECT. J Nucl Med Technol 2015;43:36-40.CrossRefGoogle Scholar
  3. 3.
    van Dijk JD, Jager PL, Mouden M, Slump CH, Ottervanger JP, de Boer J, et al. Development and validation of a patient-tailored dose regime in myocardial perfusion imaging using CZT-SPECT. J Nucl Cardiol 2014;21:1158-67.CrossRefGoogle Scholar
  4. 4.
    van Dijk JD, Jager PL, Ottervanger JP, de Boer J, Oostdijk AH, Engbers EM, et al. Development and validation of a patient-tailored dose regime in myocardial perfusion imaging using conventional SPECT. J Nucl Cardiol 2016;23:134-42.CrossRefGoogle Scholar
  5. 5.
    Oddstig J, Hindorf C, Hedeer F, Jögi J, Arheden H, Hansson MJ, et al. The radiation dose to overweighted patients undergoing myocardial perfusion SPECT can be significantly reduced: Validation of a linear weight-adjusted activity administration protocol. J Nucl Cardiol 2017;24:1912-21.CrossRefGoogle Scholar
  6. 6.
    Garcia EV, Faber TL, Esteves FP. Cardiac dedicated ultrafast SPECT cameras: New designs and clinical implications. J Nucl Med 2011;52:210-7.CrossRefGoogle Scholar
  7. 7.
    Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers. J Nucl Cardiol 2016;23:606-39.CrossRefGoogle Scholar
  8. 8.
    van Dijk JD, Jager PL, Ottervanger JP, Slump CH, Knollema S, van Dalen JA. Patient-specific tracer activity in MPI SPECT: A hands-on approach. J Nucl Cardiol 2016;23:145-8.CrossRefGoogle Scholar
  9. 9.
    White JA, Lawson RS. A Poisson resampling method for simulating reduced counts in nuclear medicine images. Phys Med Biol 2015;60:N167-76.CrossRefGoogle Scholar
  10. 10.
    Cuddy-Walsh SG, Wells RG. Patient-specific estimation of spatially variant image noise for a pinhole cardiac SPECT camera. Med Phys 2018;45:2033-47.CrossRefGoogle Scholar
  11. 11.
    Oddstig J, Hedeer F, Jögi J, Carlsson M, Hindorf C, Engblom H. Reduced administered activity, reduced acquisition time, and preserved image quality for the new CZT camera. J Nucl Cardiol 2013;20:38-44.CrossRefGoogle Scholar
  12. 12.
    O’Connor MK, Bothun E, Gibbons RJ. Influence of patient height and weight and type of stress on myocardial count density during SPECT imaging with thallium-201 and technetium 99m-sestamibi. J Nucl Cardiol 1998;5:304-12.CrossRefGoogle Scholar
  13. 13.
    Notghi A, Williams N, Smith N, Goyle S, Harding LK. Relationship between myocardial counts and patient weight: Adjusting the injected activity in myocardial perfusion scans. Nucl Med Commun 2003;24:55-9.CrossRefGoogle Scholar
  14. 14.
    Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: Design, system validation and future potential. Eur J Nucl Med Mol Imaging 2010;37:1887-902.CrossRefGoogle Scholar
  15. 15.
    Juan Ramon A, Yang Y, Pretorius PH, Slomka PJ, Johnson KL, King MA, et al. Investigation of dose reduction in cardiac perfusion SPECT via optimization and choice of the image reconstruction strategy. J Nucl Cardiol 2018;25:2117-28.CrossRefGoogle Scholar
  16. 16.
    Spyridonidis T, Skouras T, Apostolopoulos DJ. Adherence of Tc-99m agents to plastic syringes. J Nucl Cardiol 2016;23:1526.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2019
corrected publication 2019

Authors and Affiliations

  • Sarah G. Cuddy-Walsh
    • 1
    • 2
    Email author
  • Duncan C. Clackdoyle
    • 2
  • Jennifer M. Renaud
    • 2
  • R. Glenn Wells
    • 1
    • 2
  1. 1.Department of PhysicsCarleton UniversityOttawaCanada
  2. 2.Division of Cardiology, Cardiac ImagingUniversity of Ottawa Heart InstituteOttawaCanada

Personalised recommendations