Skip to main content
Log in

Nuclear cardio-oncology: From its foundation to its future

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Cardio-oncology is a growing field focused on the prevention and treatment of cardiovascular disease in oncologic patients. While a major focus of chemotherapy-related cardiac dysfunction has been on left ventricular ejection fraction, oncologic treatment can lead to cardiovascular pathology in a variety of ways. The use of multimodality imaging is essential to the care of these patients, with nuclear cardiology playing an important role. We will review nuclear cardiology’s history, its current role, and its promising future in cardio-oncology and the management of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66:7-30.

    PubMed  Google Scholar 

  2. Lefrak EA, Pitha J, Rosenheim S, Gottlieb JA. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 1973;32:302-14.

    CAS  PubMed  Google Scholar 

  3. Minow RA, Benjamin RS, Lee ET, Gottlieb JA. Adriamycin cardiomyopathy—Risk factors. Cancer 1977;39:1397-402.

    CAS  PubMed  Google Scholar 

  4. Raj S, Franco VI, Lipshultz SE. Anthracycline-induced cardiotoxicity: A review of pathophysiology, diagnosis, and treatment. Curr Treat Options Cardiovasc Med 2014;16:315.

    PubMed  Google Scholar 

  5. Shan K, Lincoff AM, Young JB. Anthracycline-induced cardiotoxicity. Ann Intern Med 1996;125:47-58.

    CAS  PubMed  Google Scholar 

  6. Lenneman CG, Sawyer DB. Cardio-oncology: An update on cardiotoxicity of cancer-related treatment. Circ Res 2016;118:1008-20.

    CAS  PubMed  Google Scholar 

  7. Saidi A, Alharethi R. Management of chemotherapy induced cardiomyopathy. Curr Cardiol Rev 2011;7:245-9.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan DM. Cardiotoxicity of anticancer drugs: The need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst 2010;102:14-25.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Moslehi JJ, Salem JE, Sosman JA, Lebrun-Vignes B, Johnson DB. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet 2018;391:933.

    PubMed  PubMed Central  Google Scholar 

  10. Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med 2016;375:1457-67.

    CAS  PubMed  Google Scholar 

  11. Schwartz RG, McKenzie WB, Alexander J, Sager P, D’Souza A, Manatunga A, et al. Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Am J Med 1987;82:1109-18.

    CAS  PubMed  Google Scholar 

  12. Panjrath GS, Jain D. Trastuzumab-induced cardiac dysfunction. Nucl Med Commun 2007;28:69-73.

    PubMed  Google Scholar 

  13. Shureiqi I, Cantor SB, Lippman SM, Brenner DE, Chernew ME, Fendrick AM. Clinical and economic impact of multiple gated acquisition scan monitoring during anthracycline therapy. Br J Cancer 2002;86:226-32.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lenzhofer R, Dudczak Gumhold G, Graninger W, Moser K, Spitzy KH. Noninvasive methods for the early detection of doxorubicin-induced cardiomyopathy. J Cancer Res Clin Oncol 1983;106:136-42.

    CAS  PubMed  Google Scholar 

  15. Jensen BV, Skovsgaard T, Nielsen SL. Functional monitoring of anthracycline cardiotoxicity: A prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol 2002;13:699-709.

    CAS  PubMed  Google Scholar 

  16. Nousiainen T, Jantunen E, Vanninen E, Hartikainen J. Early decline in left ventricular ejection fraction predicts doxorubicin cardiotoxicity in lymphoma patients. Br J Cancer 2002;86:1697-700.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: A report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2014;15:1063-93.

    PubMed  PubMed Central  Google Scholar 

  18. Armenian SH, Hudson MM, Mulder RL, Chen CH, Constine LS, Dwyer M, et al. Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: A report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol 2015;16:123-36.

    Google Scholar 

  19. Armenian SH, Lacchetti C, Lenihan D. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline Summary. J Oncol Pract 2017;13:270-5.

    PubMed  Google Scholar 

  20. Larsen CM, Mulvagh SL. Cardio-oncology: What you need to know now for clinical practice and echocardiography. Echo Res Pract 2017;4:R33-41.

    PubMed  PubMed Central  Google Scholar 

  21. Villarraga HR, Hermann J, Nkomo VT. Cardio-oncology: Role of echocardiography. Prog Cardiovasc Dis 2014;57:10-8.

    PubMed  Google Scholar 

  22. Ganz W, Sridhar KS, Ganz SS, Gonzalez R, Chakko S, Serafini A. Review of tests for monitoring doxorubicin-induced cardiomyopathy. Oncology 1996;53:461-70.

    CAS  PubMed  Google Scholar 

  23. van Royen N, Jaffe CC, Krumholz HM, Johnson KM, Lynch PJ, Natale D, et al. Comparison and reproducibility of visual echocardiographic and quantitative radionuclide left ventricular ejection fractions. Am J Cardiol 1996;77:843-50.

    PubMed  Google Scholar 

  24. Fatima N, Zaman MU, Hasmi A, Kamal S, Hameed A. Assessing adriamycin-induced early cardiotoxicity by estimating left ventricular ejection fraction using technetium-99m multiple-Gated acquisition scan and echocardiography. Nucl Med Commun 2011;32:381-5.

    CAS  PubMed  Google Scholar 

  25. Gerber TC, Gibbons RJ. Weighing the risks and benefits of cardiac imaging with ionizing radiation. JACC Cardiovasc Imaging 2010;3:528-35.

    PubMed  Google Scholar 

  26. Koene RJ, Prizment AE, Blaes A, Konety SH. Shared risk factors in cardiovascular disease and cancer. Circulation 2016;133:1104-14.

    PubMed  PubMed Central  Google Scholar 

  27. Jaworski C, Mariani JA, Wheeler G, Kaye DM. Cardiac complications of thoracic irradiation. J Am Coll Cardiol 2013;61:2319-28.

    PubMed  Google Scholar 

  28. Lestuzzi C, Vaccher E, Talamini R, Lleshi A, Meneguzzo N, Viel E, et al. Effort myocardial ischemia during chemotherapy with 5-fluorouracil: An underestimated risk. Ann Oncol 2014;25:1059-64.

    CAS  PubMed  Google Scholar 

  29. Alvarez JA, Russell RR. Cardio-oncology: The nuclear option. Curr Cardiol Rep 2017;19:31.

    PubMed  Google Scholar 

  30. Heidenreich PA, Kapoor JR. Radiation induced heart disease: Systemic disorders in heart disease. Heart 2009;95:252-8.

    PubMed  Google Scholar 

  31. Shankar SM, Marina N, Hudson MM, Hodgson DC, Adams MJ, Landier W, et al. Monitoring for cardiovascular disease in survivors of childhood cancer: Report from the Cardiovascular Disease Task Force of the Children’s Oncology Group. Pediatrics 2008;121:e387-96.

    PubMed  Google Scholar 

  32. Knight S, Min DB, Le VT, Meredith KG, Dhar R, Biswas S, et al. Implementation of a cardiac PET stress program: Comparison of outcomes to the preceding SPECT era. JCI Insight 2018;3:e120949.

    PubMed Central  Google Scholar 

  33. Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 2006;12:24-33.

    Google Scholar 

  34. Loffler AI, Bourque JM. Coronary microvascular dysfunction, microvascular angina, and management. Curr Cardiol Rep 2016;18:1.

    PubMed  PubMed Central  Google Scholar 

  35. Di Carli M, Czernin J, Hoh CK, Gerbaudo VH, Brunken RC, Huang SC, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995;91:1944-51.

    PubMed  Google Scholar 

  36. Marinescu MA, Loffler AI, Ouellette M, et al. Coronary microvascular dysfunction, microvascular angina, and treatment strategies. J Am Coll Cardiol Imaging 2015;8:210-20.

    Google Scholar 

  37. Katoh M, Takeda N, Arimoto T, Abe H, Oda K, Osuga Y, et al. Bevacizumab-related microvascular angina and its management with nicorandil. Int Heart J 2017;58:803-5.

    PubMed  Google Scholar 

  38. Chintalgattu V, Rees ML, Culver JC, Goel A, Jiffar T, Zhang J, et al. Coronary microvascular pericytes are the cellular target of sunitinib malate-induced cardiotoxicity. Sci Transl Med 2013;5:187ra69.

    PubMed  Google Scholar 

  39. Sourdon J, Lager F, Viel T, Balvay D, Moorhouse R, Bennana E, et al. Cardiac metabolic deregulation induced by the tyrosine kinase receptor inhibitor sunitinib is rescued by endothelin receptor antagonism. Theranostics 2017;7:2757-74.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim J, Park KS, Jeong GC, Cho SG, Kang SR, Jang KS, et al. Routine oncologic FDG PET/CT may be useful for evaluation of cancer therapy-Induced cardiotoxicity. J Nucl Med 2014;55:1549.

    Google Scholar 

  41. Bauckneht M, Ferrarazzo G, Fiz F, Morbelli S, Sarocchi M, Pastorino F, et al. Doxorubicin effect on myocardial metabolism as a prerequisite for subsequent development of cardiac toxicity: A translational 18f-FDG PET/CT observation. J Nucl Med 2017;58:1638-45.

    CAS  PubMed  Google Scholar 

  42. Nicolazzi NM, Carnicelli A, Fuorlo M, Scaldaferri A, Masetti R, Landolfi R, et al. Anthracycline and trastuzumab-induced cardiotoxicity in breast cancer. Eur Rev Med Pharmacol Sci 2018;22:2175-85.

    CAS  PubMed  Google Scholar 

  43. Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH, et al. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: A systematic review. J Am Coll Cardiol 2014;63:2751-68.

    PubMed  Google Scholar 

  44. Yeh ET, Vejpongsa P. Subclinical cardiotoxicity associated with cancer therapy. J Am Coll Cardiol 2015;65:2523-5.

    PubMed  Google Scholar 

  45. Takigiku K, Takeuchi M, Izumi C, Yuda S, Sakata K, Ohte N, et al. Normal range of left ventricular 2-dimensional strain: Japanese ultrasound speckle tracking of the left ventricle (JUSTICE) study. Circ J 2012;76:2623-32.

    PubMed  Google Scholar 

  46. Estorch M, Carrió I, Berná L, Martínez-Duncker C, Alonso C, Germá JR, et al. Indium-111-Antimyosin scintigraphy after doxorubicin therapy in patients with advanced breast cancer. J Nucl Med 1990;31:1965-9.

    CAS  PubMed  Google Scholar 

  47. Carrió I, Estorch M, Berná L, López-Pousa J, Taberno J, Torres G. Indium-111-Antimyosin and iodine-123-MIBG studies in early assessment of doxorubicin cardiotoxicity. J Nucl Med 1995;36:2044-9.

    PubMed  Google Scholar 

  48. Bennink RJ, van den Hoff MJ, van Hemert FJ, de Bruin KM, Spijkerboer AL, Vanderheyden JL, et al. Annexin V imaging of acute doxorubicin cardiotoxicity (apoptosis) in rats. J Nucl Med 2004;45:842-8.

    CAS  PubMed  Google Scholar 

  49. Gabrielson KL, Mok GS, Nimmagadda S, Bedja D, Pin S, Tsao A, et al. Detection of dose response in chronic doxorubicin-mediated cell death with cardiac Technetium 99m annexin V single-photon emission computed tomography. Mol Imaging 2008;7:132-8.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Disclosure

Jamieson M. Bourque receives research grant support from Astellas, has an ownership stake in Locus Health, and is a consultant for Pfizer. Milan G. Kahanda, Christopher A. Hanson, and Brandy Patterson have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamieson M. Bourque MD, MHS.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarizes the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahanda, M.G., Hanson, C.A., Patterson, B. et al. Nuclear cardio-oncology: From its foundation to its future. J. Nucl. Cardiol. 27, 511–518 (2020). https://doi.org/10.1007/s12350-019-01655-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-019-01655-6

Keywords

Navigation