Advertisement

Temporal trends of abnormal myocardial perfusion imaging in a cohort of Italian subjects: Relation with cardiovascular risk factors

  • Rosario Megna
  • Emilia Zampella
  • Roberta Assante
  • Carmela Nappi
  • Valeria Gaudieri
  • Teresa Mannarino
  • Valeria Cantoni
  • Roberta Green
  • Stefania Daniele
  • Ciro Gabriele Mainolfi
  • Wanda Acampa
  • Mario Petretta
  • Alberto CuocoloEmail author
Original Article
  • 4 Downloads

Abstract

Background

The frequency of abnormal stress single-photon emission computed tomography myocardial perfusion imaging (MPS) has decreased over the past decades despite an increase in the prevalence of cardiovascular risk factors. This study evaluated the temporal trend of abnormal stress MPS and its relationship with risk factors in a cohort of Italian subjects.

Methods

We included all patients who underwent clinically indicated stress MPS at our academic center between January 2006 and December 2017. Patients were assessed for change in demographics, clinical symptoms, risk factors, and frequency of abnormal and ischemic MPS.

Results

A total of 8,886 stress MPS studies were performed (3,350 abnormal). Age, male gender, diabetes, smoking, and angina were independent predictors of abnormal MPS. There was a slight decline in the frequency of abnormal (from 39 to 36%, P < 0.05) and ischemic (from 25 to 22%, P < 0.01) MPS during the study period, while the percentage of patients with hypertension, hypercholesterolemia, smoking, and angina increased. The Cochran-Mantel-Haenszel test indicates that the likelihood of having an abnormal MPS did not change over time for age, diabetes, smoking, and a history of coronary artery disease (CAD), increased for hypertension and hypercholesterolemia and decreased for male compared to female gender.

Conclusions

In our cohort of Italian subjects, there was a slight temporal decline in the frequency of abnormal and ischemic MPS despite an increase over time in the prevalence of many cardiac risk factors. These results strengthen the need to develop more effective strategies for appropriately referring patients to cardiac imaging procedures.

Keywords

CAD SPECT MPI diagnostic and prognostic application 

Abbreviations

CAD

Coronary artery disease

MPI

Myocardial perfusion imaging

MPS

Single-photon emission computed tomography myocardial perfusion imaging

RPART

Recursive partitioning and regression trees

SPECT

Single-photon emission computed tomography

Notes

Disclosure

R. Megna, E. Zampella, R. Assante, C. Nappi, V. Gaudieri, T. Mannarino, V. Cantoni, R. Green, S. Daniele, C.G. Mainolfi, W. Acampa, M. Petretta, and A. Cuocolo declare that they have no conflict of interest.

Supplementary material

12350_2019_1630_MOESM1_ESM.pptx (223 kb)
Supplementary material 1 (PPTX 223 kb)

References

  1. 1.
    Sytkowski PA, Kannel WB, D’Agostino RB. Changes in risk factors and the decline in mortality from cardiovascular disease. The Framingham Heart Study. N Engl J Med 1990;322:1635-41.CrossRefGoogle Scholar
  2. 2.
    Myerson M, Coady S, Taylor H, Rosamond WD, Goff DC Jr, ARIC Investigators. Declining severity of myocardial infarction from1987 to 2002: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 2009;119:503-14.CrossRefGoogle Scholar
  3. 3.
    Levitan EB, Tanner RM, Zhao H, Muntner P, Thacker EL, Howard G, et al. Secular changes in rates of coronary heart disease, fatal coronary heart disease, and out-of-hospital fatal coronary heart disease. Int J Cardiol 2014;174:436-9.CrossRefGoogle Scholar
  4. 4.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Writing Group Members, American Heart Association Statistics Committee; Stroke Statistics Subcommittee, et al. Executive summary: Heart disease and stroke statistics–2016 update: A report from the American Heart Association. Circulation 2016;133:447-54.CrossRefGoogle Scholar
  5. 5.
    GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015;385:117-71.Google Scholar
  6. 6.
    Parker MW, Iskandar A, Limone B, Perugini A, Kim H, Jones C, et al. Diagnostic accuracy of cardiac positron emission tomography versus single photon emission computed tomography for coronary artery disease: a bivariate meta-analysis. Circ Cardiovasc Imaging 2012;5:700-7.CrossRefGoogle Scholar
  7. 7.
    Cantoni V, Green R, Acampa W, Petretta M, Bonaduce D, Salvatore M, et al. Long-term prognostic value of stress myocardial perfusion imaging and coronary computed tomography angiography: A meta-analysis. J Nucl Cardiol 2016;23:185-97.CrossRefGoogle Scholar
  8. 8.
    Green R, Cantoni V, Petretta M, Acampa W, Panico M, Buongiorno P, et al. Negative predictive value of stress myocardial perfusion imaging and coronary computed tomography angiography: A meta-analysis. J Nucl Cardiol 2018;25:1588-97.CrossRefGoogle Scholar
  9. 9.
    Acampa W, Petretta M, Evangelista L, Nappi G, Luongo L, Petretta MP, et al. Stress cardiac single-photon emission computed tomographic imaging late after coronary artery bypass surgery for risk stratification and estimation of time to cardiac events. J Thorac Cardiovasc Surg 2008;136:46-51.CrossRefGoogle Scholar
  10. 10.
    Petretta M, Acampa W, Evangelista L, Daniele S, Zampella E, Assante R, et al. Reclassification of cardiovascular risk by myocardial perfusion imaging in diabetic patients with abnormal resting electrocardiogram. Nutr Metab Cardiovasc Dis 2014;24:588-93.CrossRefGoogle Scholar
  11. 11.
    Rozanski A, Gransar H, Hayes SW, Min J, Friedman JD, Thomson LE, et al. Temporal trends in the frequency of inducible myocardial ischemia during cardiac stress testing: 1991 to 2009. J Am Coll Cardiol 2013;61:1054-65.CrossRefGoogle Scholar
  12. 12.
    Duvall WL, Rai M, Ahlberg AW, O’Sullivan DM, Henzlova MJ. A multi-center assessment of the temporal trends in myocardial perfusion imaging. J Nucl Cardiol 2015;22:539-51.CrossRefGoogle Scholar
  13. 13.
    Jouni H, Askew JW, Crusan DJ, Miller TD, Gibbons RJ. Temporal trends of single-photon emission computed tomography myocardial perfusion imaging in patients without prior coronary artery disease: A 22-year experience at a tertiary academic medical center. Am Heart J 2016;176:127-33.CrossRefGoogle Scholar
  14. 14.
    Jouni H, Askew JW, Crusan DJ, Miller TD, Gibbons RJ. Temporal trends of single-photon emission computed tomography myocardial perfusion imaging in patients with coronary artery disease: A 22-year experience from a tertiary academic medical center. Circ Cardiovasc Imaging 2017;10:e005628.Google Scholar
  15. 15.
    Thompson RC, Allam AH. More risk factors, less ischemia, and the relevance of MPI testing. J Nucl Cardiol 2015;22:552-4.CrossRefGoogle Scholar
  16. 16.
    Megna R, Petretta M, Alfano B, Cantoni V, Green R, Daniele S, et al. A new relational database including clinical data and myocardial perfusion imaging findings in subjects with suspected or known coronary artery disease. Curr Med Imaging Rev. 2018 (E-pub Ahead of Print)  https://doi.org/10.2174/1573405614666180807110829.
  17. 17.
    Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines), et al. ACC/AHA 2002 guideline update for exercise testing: Summary article: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Circulation 2002;2002(106):1883-92.Google Scholar
  18. 18.
    Verberne HJ, Acampa W, Anagnostopoulos C, Ballinger J, Bengel F, European Association of Nuclear Medicine (EANM), et al. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. Eur J Nucl Med Mol Imaging 2015;2015(42):1929-40.CrossRefGoogle Scholar
  19. 19.
    Berman DS, Abidov A, Kang X, Hayes SW, Friedman JD, Sciammarella MG, et al. Prognostic validation of a 17-segment score derived from a 20-segment score for myocardial perfusion SPECT interpretation. J Nucl Cardiol 2004;11:414-23.CrossRefGoogle Scholar
  20. 20.
    Chen T, Guestrin C. XGBoost: A scalable tree boosting system. In: Proceedings of the 22Nd ACM SIGKDD international conference on knowledge discovery and data mining, 785–94. ACM, 2016.Google Scholar
  21. 21.
    Friedman JH. Greedy function approximation: A gradient boosting machine. Ann Stat 2001;29:1189-232.CrossRefGoogle Scholar
  22. 22.
    Therneau TM, Atkinson EJ. An Introduction to Recursive Partitioning Using rpart Routines. Technical Report 61, Section of Biostatistics, Mayo Clinic, Rochester, 1997. http://www.mayo.edu/hsr/techrpt/61.pdf.
  23. 23.
    Hemal K, Pagidipati NJ, Coles A, Dolor RJ, Mark DB, Pellikka PA, et al. Sex differences in demographics, risk factors, presentation, and noninvasive testing in stable outpatients with suspected coronary artery disease: Insights from the promise trial. JACC Cardiovasc Imaging 2016;9:337-46.CrossRefGoogle Scholar
  24. 24.
    American Heart Association/American Stroke Association. Cardiovascular Disease: Women’s No. 1 Health Threat. https://www.heart.org/-/media/files/about-us/policy-research/fact-sheets/facts-cvd-womens-no-1-health-threat.pdf. Accessed December 12 2018.Google Scholar
  25. 25.
    Shaw LJ, Bugiardini R, Merz CN. Women and ischemic heart disease: Evolving knowledge. J Am Coll Cardiol 2009;54:1561-75.CrossRefGoogle Scholar
  26. 26.
    Mosca L, Hammond G, Mochari-Greenberger H, Towfighi A, Albert MA MA, American Heart Association national survey. Fifteen-year trends in awareness of heart disease in women: Results of a 2012 American Heart Association national survey. Circulation 2012;2013:1254-63.Google Scholar
  27. 27.
    Chhabra L, Ahlberg AW, Henzlova MJ, Duvall WL. Temporal trends of stress myocardial perfusion imaging: Influence of diabetes, gender and coronary artery disease status. Int J Cardiol 2016;202:922-9.CrossRefGoogle Scholar
  28. 28.
    Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, American Heart Association Statistics Committee and Stroke Statistics Subcommittee, et al. Executive summary: Heart disease and stroke statistics-2012 update: A report from the American Heart Association. Circulation 2012;125:188-97.CrossRefGoogle Scholar
  29. 29.
    Ford ES, Ajani UA, Croft JB, Critchley JA, Labarthe DR, Kottke TE, et al. Explaining the decrease in U.S. deaths from coronary disease, 1980–2000. N Engl J Med 2007;356:2388-98.CrossRefGoogle Scholar
  30. 30.
    Iskandrian AE, Hage FG. Declining frequency of ischemia detection using stress myocardial perfusion imaging. J Am Coll Cardiol 2013;61:1066-8.CrossRefGoogle Scholar
  31. 31.
    Acampa W, Rozza F, Zampella E, Assante R, Mannarino T, Nappi C, et al. Warranty period of normal stress myocardial perfusion imaging in hypertensive patients: A parametric survival analysis. J Nucl Cardiol. 2018. [Epub ahead of print].Google Scholar
  32. 32.
    Nappi C, Acampa W, Nicolai E, Daniele S, Zampella E, Assante R, et al. Long-term prognostic value of low-dose normal stress-only myocardial perfusion imaging by wide beam reconstruction: A competing risk analysis. J Nucl Cardiol. 2018 Jul 19. [Epub ahead of print].Google Scholar

Copyright information

© American Society of Nuclear Cardiology 2019

Authors and Affiliations

  • Rosario Megna
    • 1
  • Emilia Zampella
    • 2
  • Roberta Assante
    • 2
  • Carmela Nappi
    • 2
  • Valeria Gaudieri
    • 1
    • 2
  • Teresa Mannarino
    • 2
  • Valeria Cantoni
    • 2
  • Roberta Green
    • 2
  • Stefania Daniele
    • 1
  • Ciro Gabriele Mainolfi
    • 2
  • Wanda Acampa
    • 1
    • 2
  • Mario Petretta
    • 3
  • Alberto Cuocolo
    • 2
    Email author
  1. 1.Institute of Biostructure and BioimagingNational Council of ResearchNaplesItaly
  2. 2.Department of Advanced Biomedical SciencesUniversity Federico IINaplesItaly
  3. 3.Department of Translational Medical SciencesUniversity Federico IINaplesItaly

Personalised recommendations