Advertisement

Evaluation of different respiratory gating schemes for cardiac SPECT

  • Duo Zhang
  • P. Hendrik Pretorius
  • Michael Ghaly
  • Qi Zhang
  • Michael A. King
  • Greta S. P. Mok
Original Article
  • 20 Downloads

Abstract

Background

Respiratory gating reduces motion blurring in cardiac SPECT. Here we aim to evaluate the performance of three respiratory gating strategies using a population of digital phantoms with known truth and clinical data.

Methods

We analytically simulated 60 projections for 10 XCAT phantoms with 99mTc-sestamibi distributions using three gating schemes: equal amplitude gating (AG), equal count gating (CG), and equal time gating (TG). Clinical list-mode data for 10 patients who underwent 99mTc-sestamibi scans were also processed using the 3 gating schemes. Reconstructed images in each gate were registered to a reference gate, averaged and reoriented to generate the polar plots. For simulations, image noise, relative difference (RD) of averaged count for each of the 17 segment, and relative defect size difference (RSD) were analyzed. For clinical data, image intensity profile and FWHM were measured across the left ventricle wall.

Results

For simulations, AG and CG methods showed significantly lower RD and RSD compared to TG, while noise variation was more non-uniform through different gates for AG. In the clinical study, AG and CG had smaller FWHM than TG.

Conclusions

AG and CG methods show better performance for motion reduction and are recommended for clinical respiratory gating SPECT implementation.

Keywords

Respiratory gating Cardiac perfusion SPECT/CT Simulation 

Abbreviations

SPECT

Single photon emission computed tomography

End-EX

End-expiration

End-IN

End-inspiration

AG

Equal amplitude gating

CG

Equal count gating

TG

Equal time or phase gating

RD

Relative difference

NSD

Normalized standard deviation

RSD

Relative defect size difference

FWHM

Full-width-at-half-maxima

Notes

Acknowledgements

This work was supported by research grants from National Natural Science Foundation of China (81601525), Macau Science and Technology Development Fund (114/2016/A3), University of Macau (MYRG2016-00091-FST) and the National Heart, Lung, and Blood Institute of the National Institutes of Health (R01 HL122484). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes.

Disclosure

None.

Supplementary material

12350_2018_1392_MOESM1_ESM.pptx (630 kb)
Supplementary material 1 (PPTX 629 kb)

References

  1. 1.
    Chrysanthou-Baustert I, Parpottas Y, Demetriadou O, Christofides S, Yiannakkaras C, Kaolis D, et al. Diagnostic sensitivity of SPECT myocardial perfusion imaging using a pumping cardiac phantom with inserted variable defects. J Nucl Cardiol. 2013;20:609–15.CrossRefPubMedGoogle Scholar
  2. 2.
    Wang Y, Riederer SJ, Ehman RL. Respiratory motion of the heart: Kinematics and the implications for the spatial resolution in coronary imaging. Magn Reson Med. 1995;33:713–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Pretorius PH, Johnson KL, Dahlberg ST, King MA. Investigation of the physical effects of respiratory motion compensation in a large population of patients undergoing Tc-99m cardiac perfusion SPECT/CT stress imaging. J Nucl Cardiol 2017; Epub ahead of print.Google Scholar
  4. 4.
    Zhang D, Yang B-H, Wu NY, Mok GSP. Respiratory average CT for attenuation correction in myocardial perfusion SPECT/CT. Ann Nucl Med. 2017;31:172–80.CrossRefPubMedGoogle Scholar
  5. 5.
    Okuda K, Nakajima K, Kikuchi A, Onoguchi M, Hashimoto M. Cardiac and respiratory motion-induced artifact in myocardial perfusion SPECT 4D digital anthropomorphic phantom study. Ann Nucl Cardiol. 2017;3:88–93.CrossRefGoogle Scholar
  6. 6.
    Tsui BMW, Segars WP, Lalush DS. Effects of upward creep and respiratory motion in myocardial SPECT. IEEE Trans Nucl Sci. 2000;47:1192–5.CrossRefGoogle Scholar
  7. 7.
    Bitarafan A, Rajabi H, Gruy B, Rustgou F, Sharafi AA, Firoozabady H, et al. Respiratory motion detection and correction in ECG-gated SPECT: A new approach. Korean J Radiol. 2008;9:490–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mukherjee JM, McNamara JE, Johnson KL, Dey J, King MA. Estimation of rigid-body and respiratory motion of the heart from marker-tracking data for SPECT motion correction. IEEE Trans Nucl Sci. 2009;56:147–55.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mukherjee JM, Hutton BF, Johnson KL, Pretorius PH, King MA. An evaluation of data-driven motion estimation in comparison to the usage of external-surrogates in cardiac SPECT imaging. Phys Med Biol. 2013;58:7625–46.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sanders JC, Ritt P, Kuwert T, Vija AH, Maier AK. Fully automated data-driven respiratory signal extraction from SPECT images using laplacian eigenmaps. IEEE Trans Med Imaging. 2016;35:2425–35.CrossRefPubMedGoogle Scholar
  11. 11.
    Ko CL, Wu YW, Cheng MF, Yen RF, Wu WC, Tzen KY. Data-driven respiratory motion tracking and compensation in CZT cameras: A comprehensive analysis of phantom and human images. J Nucl Cardiol. 2015;22:308–18.CrossRefPubMedGoogle Scholar
  12. 12.
    Chung C, Mark H, Max L, James B, Yariv G, Yi-Hwa L, et al. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system. Phys Med Biol. 2014;59:6267–87.CrossRefGoogle Scholar
  13. 13.
    Suga K, Kawakami Y, Zaki M, Yamashita T, Shimizu K, Matsunaga N. Clinical utility of co-registered respiratory-gated 99mTc-Technegas/MAA SPECT-CT images in the assessment of regional lung functional impairment in patients with lung cancer. Eur J Nucl Med Mol Imaging. 2004;31:1280–90.CrossRefPubMedGoogle Scholar
  14. 14.
    Suga K, Yasuhiko K, Zaki M, Yamashita T, Seto A, Matsumoto T, et al. Assessment of regional lung functional impairment with co-registered respiratory-gated ventilation/perfusion SPET-CT images: Initial experiences. Eur J Nucl Med Mol Imaging. 2004;31:240–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Cho K, Kumiata S, Okada S, Kumazaki T. Development of respiratory gated myocardial SPECT system. J Nucl Cardiol. 1999;6:20–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Smyczynski MS, Gifford HC, Dey J, Lehovich A, McNamara JE, Segars WP, et al. LROC investigation of three strategies for reducing the impact of respiratory motion on the detection of solitary pulmonary nodules in SPECT. IEEE Trans Nucl Sci. 2016;63:130–9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kovalski G, Israel O, Keidar Z, Frenkel A, Sachs J, Azhari H. Correction of heart motion due to respiration in clinical myocardial perfusion SPECT scans using respiratory gating. J Nucl Med. 2007;48:630–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Segars WP, Tsui BMW. Study of the efficacy of respiratory gating in myocardial SPECT using the new 4-D NCAT phantom. IEEE Trans Nucl Sci. 2002;49:675–9.CrossRefGoogle Scholar
  19. 19.
    Segars WP, Mok SP, Tsui BMW. Investigation of respiratory gating in quantitative myocardial SPECT. IEEE Trans Nucl Sci. 2009;56:91–6.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pépin A, Daouk J, Bailly P, Hapdey S, Meyer M-E. Management of respiratory motion in PET/computed tomography: The state of the art. Nucl Med Commun. 2014;35:113–22.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dey J, Segars WP, Pretorius PH, Walvick RP, Bruyant PP, Dahlberg S, et al. Estimation and correction of cardiac respiratory motion in SPECT in the presence of limited-angle effects due to irregular respiration. Med Phys. 2010;37:6453–65.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jani SS, Robinson CG, Dahlbom M, White BM, Thomas DH, Gaudio S, et al. A comparison of amplitude-based and phase-based positron emission tomography gating algorithms for segmentation of internal target volumes of tumors subject to respiratory motion. Int J Radiat Oncol Biol Phys. 2013;87:562–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dawood M, Büther F, Lang N, Schober O, Schäfers KP. Respiratory gating in positron emission tomography: A quantitative comparison of different gating schemes. Med Phys. 2007;34:3067–76.CrossRefPubMedGoogle Scholar
  24. 24.
    Lu W, Parikh PJ, Hubenschmidt JP, Bradley JD, Low DA. A comparison between amplitude sorting and phase-angle sorting using external respiratory measurement for 4D CT. Med Phys. 2006;33:2964–74.CrossRefPubMedGoogle Scholar
  25. 25.
    Segars WP, Sturgeon G, Mendonca S, Grimes J, Tsui BMW. 4D XCAT phantom for multimodality imaging research. Med Phys. 2010;37:4902–15.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ghaly M, Du Y, Fung GSK, Tsui BMW, Links JM, Frey E. Design of a digital phantom population for myocardial perfusion SPECT imaging research. Phys Med Biol. 2014;59:2935–53.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Quirk S, Becker N, Smith WL. External respiratory motion analysis and statistics for patients and volunteers. J Appl Clin Med Phys. 2013;14:90–101.CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Tsui BMW, Hu HB, Gilland DR, Gullberg GT. Implementation of simultaneous attenuation and detector response correction in SPECT. IEEE Trans Nucl Sci. 1988;35:778–83.CrossRefGoogle Scholar
  29. 29.
    Ghaly M, Links JM, Frey E. Optimization of energy window and evaluation of scatter compensation methods in myocardial perfusion SPECT using the ideal observer with and without model mismatch and an anthropomorphic model observer. J Med Imaging. 2015;2:015502.CrossRefGoogle Scholar
  30. 30.
    Pretorius PH, Tin-Su P, Narayanan MV, King MA. A study of the influence of local variations in myocardial thickness on SPECT perfusion imaging. IEEE Trans Nucl Sci. 2002;49:2304–8.CrossRefGoogle Scholar
  31. 31.
    Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging. 1991;10:408–12.CrossRefPubMedGoogle Scholar
  32. 32.
    McNamara JE, Pretorius PH, Johnson K, Mukherjee JM, Dey J, Gennert MA, et al. A flexible multicamera visual-tracking system for detecting and correcting motion-induced artifacts in cardiac SPECT slices. Med Phys. 2009;36:1913–23.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, et al. Engineering and algorithm design for an image processing API: A technical report on ITK - The Insight Toolkit. Stud Health Technol Inform. 2002;85:586–92.PubMedGoogle Scholar
  34. 34.
    Pluim JPW, Maintz JBA, Viergever MA. Mutual-information-based registration of medical images: A survey. IEEE Trans Med Imaging. 2003;22:986–1004.CrossRefPubMedGoogle Scholar
  35. 35.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.CrossRefPubMedGoogle Scholar
  36. 36.
    McLeish K, Hill DL, Atkinson D, Blackall JM, Razavi R. A study of the motion and deformation of the heart due to respiration. IEEE Trans Med Imaging. 2002;21:1142–50.CrossRefPubMedGoogle Scholar
  37. 37.
    Feng T, Wang J, Fung G, Tsui B. Non-rigid dual respiratory and cardiac motion correction methods after, during, and before image reconstruction for 4D cardiac PET. Phys Med Biol. 2016;61:151–68.CrossRefPubMedGoogle Scholar
  38. 38.
    Qi W, Yang Y, Wernick MN, Pretorius PH, King MA. Limited-angle effect compensation for respiratory binned cardiac SPECT. Med Phys. 2016;43:443–54.CrossRefPubMedGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2018

Authors and Affiliations

  • Duo Zhang
    • 1
    • 2
  • P. Hendrik Pretorius
    • 2
  • Michael Ghaly
    • 3
    • 4
  • Qi Zhang
    • 1
  • Michael A. King
    • 2
  • Greta S. P. Mok
    • 1
    • 2
    • 5
  1. 1.Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and TechnologyUniversity of MacauTaipaChina
  2. 2.Department of RadiologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  3. 3.The Russell H Morgan Department of Radiology and Radiological ScienceJohns Hopkins UniversityBaltimoreUSA
  4. 4.Radiopharmaceutical Imaging and Dosimetry (RAPID), LLCBaltimoreUSA
  5. 5.Faculty of Health SciencesUniversity of MacauTaipaChina

Personalised recommendations