Feasibility of simultaneous 99mTc-tetrofosmin and 123I-BMIPP dual-tracer imaging with cadmium-zinc-telluride detectors in patients undergoing primary coronary intervention for acute myocardial infarction

  • Yoshihiro Yamada
  • Shintaro NakanoEmail author
  • Youdou Gatate
  • Nanami Okano
  • Toshihiro Muramatsu
  • Shigeyuki Nishimura
  • Ichiei Kuji
  • Kenji Fukushima
  • Ichiro Matsunari
Original Article



Simultaneous dual-tracer imaging using isotopes with close photo-peaks may benefit from improved properties of cadmium-zinc-telluride (CZT)-based scanners.


Thirty patients having undergone primary percutaneous coronary intervention for acute myocardial infarction underwent single-(99mTc-tetrofosmin (TF) or 123I-BMIPP first) followed by simultaneous 99mTc-TF /123I-BMIPP dual-tracer imaging using a Discovery NM/CT 670 CZT. The values for the quantitative gated-SPECT (QGS) and the quantitative perfusion SPECT (QPS) were assessed.


The intra-class correlation (ICC) coefficients between the single- and dual-tracer imaging were high in all the QGS and QPS data (Summed motion score: 0.95, summed thickening score: 0.94, ejection fraction: 0.98, SRS for 99mTc-TF: 0.97/ for 123I-BMIPP: 0.95). Wall motion, wall thickening and rest scores per coronary-territory-based regions were also comparable between the single- and dual imaging (ICC coefficient > 0.91). The interrater concordance in the visual analysis for the infarction and perfusion-metabolism mismatch was significant for the global and regional left ventricle (P < 0.001).


The quantitative/semi-quantitative values for global and regional left-ventricular function, perfusion, and fatty acid metabolism were closely comparable between the dual-tracer imaging and the single-tracer mode. These data suggests the feasibility of the novel CZT-based scanner for the simultaneous 99mTc-TF /123I-BMIPP dual-tracer acquisitions in clinical settings.


Perfusion-metabolism mismatch CZT camera acute myocardial infarction dual imaging 



The authors acknowledged to technical staffs in the Saitama Medical University Hospital and Mr. Hideyasu Hosono (GE Healthcare) for their technical support in performing imaging examination and analysis.



Supplementary material

12350_2018_1585_MOESM1_ESM.pptx (837 kb)
Supplementary material 1 (PPTX 836 kb)
12350_2018_1585_MOESM2_ESM.pdf (966 kb)
Supplementary material 2 (PDF 965 kb)
12350_2018_1585_MOESM3_ESM.pdf (153 kb)
Supplementary material 3 (PDF 154 kb)


  1. 1.
    Stanley WC, Lopaschuk GD, Hall JL, McCormack JG. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res 1997;33:243-57.CrossRefGoogle Scholar
  2. 2.
    Bolli R. Myocardial ‘stunning’ in man. Circulation 1992;86:1671-91.CrossRefGoogle Scholar
  3. 3.
    Dilsizian V, Bateman TM, Bergmann SR, Des Prez R, Magram MY, Goodbody AE, et al. Metabolic imaging with beta-methyl-p-[(123)I]-iodophenyl-pentadecanoic acid identifies ischemic memory after demand ischemia. Circulation 2005;112:2169-74.CrossRefGoogle Scholar
  4. 4.
    Bergmann SR. Imaging of myocardial fatty acid metabolism with PET. J Nucl Cardiol 2007;14:S118-24.CrossRefGoogle Scholar
  5. 5.
    Dobbeleir AA, Hambye AS, Franken PR. Influence of methodology on the presence and extent of mismatching between 99 mTc-MIBI and 123I-BMIPP in myocardial viability studies. J Nucl Med 1999;40:707-14.Google Scholar
  6. 6.
    Tamaki N, Tadamura E, Kawamoto M, Magata Y, Yonekura Y, Fujibayashi Y, et al. Decreased uptake of iodinated branched fatty acid analog indicates metabolic alterations in ischemic myocardium. J Nucl Med 1995;36:1974-80.Google Scholar
  7. 7.
    Hambye AS, Vervaet A, Dobbeleir A, Dendale P, Franken P. Prediction of functional outcome by quantification of sestamibi and BMIPP after acute myocardial infarction. Eur J Nucl Med 2000;27:1494-500.CrossRefGoogle Scholar
  8. 8.
    Franken PR, Dendale P, De Geeter F, Demoor D, Bossuyt A, Block P. Prediction of functional outcome after myocardial infarction using BMIPP and sestamibi scintigraphy. J Nucl Med 1996;37:718-22.Google Scholar
  9. 9.
    Sogbein OO, Pelletier-Galarneau M, Schindler TH, Wei L, Wells RG, Ruddy TD. New SPECT and PET radiopharmaceuticals for imaging cardiovascular disease. Biomed Res Int 2014;2014:942960.CrossRefGoogle Scholar
  10. 10.
    Kobayashi M, Matsunari I, Nishi K, Mizutani A, Miyazaki Y, Ogai K, et al. Simultaneous acquisition of (99 m)Tc- and (123)I-labeled radiotracers using a preclinical SPECT scanner with CZT detectors. Ann Nucl Med 2016;30:263-71.CrossRefGoogle Scholar
  11. 11.
    Ko T, Utanohara Y, Suzuki Y, Kurihara M, Iguchi N, Umemura J, et al. A preliminary feasibility study of simultaneous dual-isotope imaging with a solid-state dedicated cardiac camera for evaluating myocardial perfusion and fatty acid metabolism. Heart Vessel 2016;31:38-45.CrossRefGoogle Scholar
  12. 12.
    Madsen MT. Recent advances in SPECT imaging. J Nucl Med 2007;48:661-73.CrossRefGoogle Scholar
  13. 13.
    Gambhir SS, Berman DS, Ziffer J, Nagler M, Sandler M, Patton J, et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med 2009;50:635-43.CrossRefGoogle Scholar
  14. 14.
    Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: Design, system validation and future potential. Eur J Nucl Med Mol Imaging 2010;37:1887-902.CrossRefGoogle Scholar
  15. 15.
    Chowdhury FU, Vaidyanathan S, Bould M, Marsh J, Trickett C, Dodds K, et al. Rapid-acquisition myocardial perfusion scintigraphy (MPS) on a novel gamma camera using multipinhole collimation and miniaturized cadmium-zinc-telluride (CZT) detectors: Prognostic value and diagnostic accuracy in a ‘real-world’ nuclear cardiology service. Eur Heart J Cardiovasc Imaging 2014;15:275-83.CrossRefGoogle Scholar
  16. 16.
    Bateman TM, Berman DS, Heller GV, Brown KA, Cerqueira MD, Verani MS, et al. American Society of Nuclear Cardiology position statement on electrocardiographic gating of myocardial perfusion SPECT scintigrams. J Nucl Cardiol 1999;6:470-1.CrossRefGoogle Scholar
  17. 17.
    Herzog BA, Buechel RR, Katz R, Brueckner M, Husmann L, Burger IA, et al. Nuclear myocardial perfusion imaging with a cadmium-zinc-telluride detector technique: Optimized protocol for scan time reduction. J Nucl Med 2010;51:46-51.CrossRefGoogle Scholar
  18. 18.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-42.CrossRefGoogle Scholar
  19. 19.
    Sharir T, Berman DS, Waechter PB, Areeda J, Kavanagh PB, Gerlach J, et al. Quantitative analysis of regional motion and thickening by gated myocardial perfusion SPECT: Normal heterogeneity and criteria for abnormality. J Nucl Med 2001;42:1630-8.Google Scholar
  20. 20.
    Germano G, Kavanagh PB, Waechter P, Areeda J, Van Kriekinge S, Sharir T, et al. A new algorithm for the quantitation of myocardial perfusion SPECT. I: Technical principles and reproducibility. J Nucl Med 2000;41:712-9.Google Scholar
  21. 21.
    Agostini D, Marie PY, Ben-Haim S, Rouzet F, Songy B, Giordano A, et al. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: A review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM). Eur J Nucl Med Mol Imaging 2016;43:2423-32.CrossRefGoogle Scholar
  22. 22.
    Kacperski K, Erlandsson K, Ben-Haim S, Hutton BF. Iterative deconvolution of simultaneous 99mTc and 201Tl projection data measured on a CdZnTe-based cardiac SPECT scanner. Phys Med Biol 2011;56:1397-414.CrossRefGoogle Scholar
  23. 23.
    Erlandsson K, Kacperski K, van Gramberg D, Hutton BF. Performance evaluation of D-SPECT: A novel SPECT system for nuclear cardiology. Phys Med Biol 2009;54:2635-49.CrossRefGoogle Scholar
  24. 24.
    Ben-Haim S, Kacperski K, Hain S, Van Gramberg D, Hutton BF, Erlandsson K, et al. Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera. Eur J Nucl Med Mol Imaging 2010;37:1710-21.CrossRefGoogle Scholar
  25. 25.
    Buechel RR, Herzog BA, Husmann L, Burger IA, Pazhenkottil AP, Treyer V, et al. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: First clinical validation. Eur J Nucl Med Mol Imaging 2010;37:773-8.CrossRefGoogle Scholar
  26. 26.
    Mouden M, Timmer JR, Ottervanger JP, Reiffers S, Oostdijk AH, Knollema S, et al. Impact of a new ultrafast CZT SPECT camera for myocardial perfusion imaging: Fewer equivocal results and lower radiation dose. Eur J Nucl Med Mol Imaging 2012;39:1048-55.CrossRefGoogle Scholar
  27. 27.
    Gimelli A, Bottai M, Giorgetti A, Genovesi D, Kusch A, Ripoli A, et al. Comparison between ultrafast and standard single-photon emission CT in patients with coronary artery disease: A pilot study. Circ Cardiovasc Imaging 2011;4:51-8.CrossRefGoogle Scholar
  28. 28.
    Neill J, Prvulovich EM, Fish MB, Berman DS, Slomka PJ, Sharir T, et al. Initial multicentre experience of high-speed myocardial perfusion imaging: Comparison between high-speed and conventional single-photon emission computed tomography with angiographic validation. Eur J Nucl Med Mol Imaging 2013;40:1084-94.CrossRefGoogle Scholar
  29. 29.
    Cochet H, Bullier E, Gerbaud E, Durieux M, Godbert Y, Lederlin M, et al. Absolute quantification of left ventricular global and regional function at nuclear MPI using ultrafast CZT SPECT: Initial validation vs cardiac MR. J Nucl Med 2013;54:556-63.CrossRefGoogle Scholar
  30. 30.
    Jensen MM, Schmidt U, Huang C, Zerahn B. Gated tomographic radionuclide angiography using cadmium-zinc-telluride detector gamma camera; comparison to traditional gamma cameras. J Nucl Cardiol 2014;21:384-96.CrossRefGoogle Scholar
  31. 31.
    Matsunari I, Saga T, Taki J, Akashi Y, Hirai J, Wakasugi T, et al. Improved myocardial fatty acid utilization after percutaneous transluminal coronary angioplasty. J Nucl Med 1995;36:1605-7.Google Scholar
  32. 32.
    Kawamoto M, Tamaki N, Yonekura Y, Tadamura E, Fujibayashi Y, Magata Y, et al. Combined study with I-123 fatty acid and thallium-201 to assess ischemic myocardium: Comparison with thallium redistribution and glucose metabolism. Ann Nucl Med 1994;8:47-54.CrossRefGoogle Scholar
  33. 33.
    Taki J, Nakajima K, Matsunari I, Bunko H, Takata S, Kawasuji M, et al. Assessment of improvement of myocardial fatty acid uptake and function after revascularization using iodine-123-BMIPP. J Nucl Med 1997;38:1503-10.Google Scholar
  34. 34.
    Kawai Y, Tsukamoto E, Nozaki Y, Morita K, Sakurai M, Tamaki N. Significance of reduced uptake of iodinated fatty acid analogue for the evaluation of patients with acute chest pain. J Am Coll Cardiol 2001;38:1888-94.CrossRefGoogle Scholar
  35. 35.
    Gibbons RJ, Chatterjee K, Daley J, Douglas JS, Fihn SD, Gardin JM, et al. ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients With Chronic Stable Angina). J Am Coll Cardiol 1999;33:2092-197.CrossRefGoogle Scholar
  36. 36.
    Iwado H, Iwado Y, Ohmori K, Mizushige K, Yukiiri K, Takagi Y, et al. Latent abnormal fatty acid metabolism in apparently normal perfusion during stress in patients with restenosis after coronary angioplasty: Assessment by exercise stress thallium-201 and iodine-123-labeled 15-(p-iodophenyl)-3-R, S-methylpentadecanoic acid-dual myocardial single-photon emission computed tomography. Am J Cardiol 2004;93:685-8.CrossRefGoogle Scholar
  37. 37.
    Nakahara T, Hashimoto J, Suzuki T, Fujii H, Kubo A. Completely inverse images in dual-isotope SPECT with Tl-201 and I-123 MIBG in a patient with myocarditis. Ann Nucl Med 2001;15:277-80.CrossRefGoogle Scholar
  38. 38.
    Ouyang J, Zhu X, Trott CM, El Fakhri G. Quantitative simultaneous 99mTc/123I cardiac SPECT using MC-JOSEM. Med Phys 2009;36:602-11.CrossRefGoogle Scholar
  39. 39.
    Du Y, Tsui BM, Frey EC. Model-based crosstalk compensation for simultaneous 99mTc/123I dual-isotope brain SPECT imaging. Med Phys 2007;34:3530-43.CrossRefGoogle Scholar
  40. 40.
    Blaire T, Bailliez A, Ben Bouallegue F, Bellevre D, Agostini D, Manrique A. First assessment of simultaneous dual isotope ((123)I/(99m)Tc) cardiac SPECT on two different CZT cameras: A phantom study. J Nucl Cardiol 2017;25:1692-704.CrossRefGoogle Scholar
  41. 41.
    Kawai Y, Tsukamoto E, Nozaki Y, Kishino K, Kohya T, Tamaki N. Use of 123I-BMIPP single-photon emission tomography to estimate areas at risk following successful revascularization in patients with acute myocardial infarction. Eur J Nucl Med 1998;25:1390-5.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2019

Authors and Affiliations

  • Yoshihiro Yamada
    • 1
  • Shintaro Nakano
    • 1
    Email author
  • Youdou Gatate
    • 1
  • Nanami Okano
    • 2
  • Toshihiro Muramatsu
    • 1
  • Shigeyuki Nishimura
    • 1
  • Ichiei Kuji
    • 3
  • Kenji Fukushima
    • 3
  • Ichiro Matsunari
    • 2
  1. 1.Department of Cardiology International Medical CenterSaitama Medical UniversitySaitamaJapan
  2. 2.Division of Nuclear Medicine, Department of RadiologySaitama Medical UniversitySaitamaJapan
  3. 3.Department of Nuclear Medicine International Medical CenterSaitama Medical UniversitySaitamaJapan

Personalised recommendations