Advertisement

Partial volume and motion correction in cardiac PET: First results from an in vs ex vivo comparison using animal datasets

  • A. Turco
  • O. Gheysens
  • J. Duchenne
  • J. Nuyts
  • F. Rega
  • J. U. Voigt
  • K. Vunckx
  • P. ClausEmail author
Original Article

Abstract

Background

In a previous study on ex vivo, static cardiac datasets, we investigated the benefits of performing partial volume correction (PVC) in cardiac 18F-Fluorodeoxyglucose(FDG) PET datasets. In the present study, we extend the analysis to in vivo cardiac datasets, with the aim of defining which reconstruction technique maximizes quantitative accuracy and, ultimately, makes PET a better diagnostic tool for cardiac pathologies.

Methods

In vivo sheep datasets were acquired and reconstructed with/without motion correction and using several reconstruction algorithms (with/without resolution modeling, with/without non-anatomical priors). Corresponding ex vivo scans of the excised sheep hearts were performed on a small-animal PET scanner (Siemens Focus 220, microPET) to provide high-resolution reference data unaffected by respiratory and cardiac motion. A comparison between the in vivo cardiac reconstructions and the corresponding ex vivo ground truth was performed.

Results

The use of an edge-preserving prior (Total Variation (TV) prior in this work) in combination with motion correction reduces the bias in absolute quantification when compared to the standard clinical reconstructions (− 0.83 vs − 3.74 SUV units), when the end-systolic gate is considered. At end-diastole, motion correction improves absolute quantification but the PVC with priors does not improve the similarity to the ground truth more than a regular iterative reconstruction with motion correction and without priors. Relative quantification was not influenced much by the chosen reconstruction algorithm.

Conclusions

The relative ranking of the algorithms suggests superiority of the PVC reconstructions with dual gating in terms of overall absolute quantification and noise properties. A well-tuned edge-preserving prior, such as TV, enhances the noise properties of the resulting images of the heart. The end-systolic gate yields the most accurate quantification of cardiac datasets.

Keywords

Cardiac PET Motion correction Partial volume correction Quantification 

Abbreviations

18F-FDG

18F-fluorodeoxyglucose

PET

Positron emission tomography

PVE

Partial volume effect

PVC

Partial volume correction

OSEM

Ordered subsets expectation maximization (reconstruction algorithm)

RR

Resolution recovery

MAP

Maximum a posteriori (reconstruction algorithm)

TV

Total variation (prior)

SUV

Standard uptake values

LV

Left ventricular

Notes

Acknowledgements

The authors wish to thank Charles Watson and Judd Jones for their help with the Siemens data processing.

Author Contributions

AT was responsible for the study design, the simulation setup, the reconstructions, and the data collection and analysis, and drafted the manuscript. JD was also responsible for the data collection. JN and KV assisted with the study design, the analysis of data, and the careful revision of the manuscript. JUV, FR, PC, JD, and OG participated in the study design and critically revised the manuscript. All authors read and approved the final manuscript.

Disclosure

The authors declare that they have no competing interests.

Supplementary material

12350_2018_1581_MOESM1_ESM.pptx (682 kb)
Supplementary material 1 (pptx 682 KB)

References

  1. 1.
    Schindler TH. Cardiac PET/computed tomography applications and cardiovascular outcome. PET Clin 2015;10:441-59.CrossRefGoogle Scholar
  2. 2.
    Russell K, Eriksen M, Aaberge L, Wilhelmsen N, Skulstad H, Remme EW, et al. A novel clinical method for quantification of regional left ventricular pressure-strain loop area: A non-invasive index of myocardial work. Eur Heart J 2012;33:724-33.CrossRefGoogle Scholar
  3. 3.
    Nowak B, Sinha AM, Schaefer WM, Koch KC, Kaiser HJ, Hanrath P, et al. Cardiac resynchronization therapy homogenizes myocardial glucose metabolism and perfusion in dilated cardiomyopathy and left bundle branch block. J Am Coll Cardiol 2003;41:1523-8.CrossRefGoogle Scholar
  4. 4.
    Turco A, Nuyts J, Duchenne J, Gheysens O, Voigt J-U, Claus P, et al. Analysis of partial volume correction on quantification and regional heterogeneity in cardiac PET. J Nucl Cardiol 2017.  https://doi.org/10.1007/s12350-016-0773-z.
  5. 5.
    Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imaging Vis 2011;40:120-45.CrossRefGoogle Scholar
  6. 6.
    Ter-Pogossian MM, Bergmann SR, Sobel BE. Influence of cardiac and respiratory motion on tomographic reconstructions of the heart: Implications for quantitative nuclear cardiology. J Comput Assist Tomogr 1982;6:1148-55.CrossRefGoogle Scholar
  7. 7.
    Ahmed MA, Xiao P, Xie Q. New approach for simultaneous respiratory and cardiac motion correction in cardiac PET (NAMC-CPET). Phys Med Biol. 2015;60:7779.CrossRefGoogle Scholar
  8. 8.
    Buther F, Dawood M, Stegger L, Wubbeling F, Schafers M, Schober O, et al. List mode-driven cardiac and respiratory gating in PET. J Nucl Med 2009;50:674-81.CrossRefGoogle Scholar
  9. 9.
    Kokki T, Sipilä HT, Teräs M, Noponen T, Durand-Schaefer N, Klén R, et al. Dual gated PET/CT imaging of small targets of the heart: Method description and testing with a dynamic heart phantom. J Nucl Cardiol 2010;17:71-84.CrossRefGoogle Scholar
  10. 10.
    Duchenne J, Claus P, Turco A, Vunckx K, Pagourelias E, Haemers P, et al. A new animal model of rapid pacing-induced dilated cardiomyopathy and LBBB. Eur Heart J 2015;16:P145.Google Scholar
  11. 11.
    Kim J (2009) Hyperinsulinemic euglycemic clamp to assess insulin sensitivity in vivo. In: C. Stocker (ed.) Type 2 diabetes, Methods in Molecular Biology, vol. 560. Humana Press, New York. ISBN 978-1-934115-15-2Google Scholar
  12. 12.
    Dawood M, Büther F, Lang N, Schober O, Schäfers KP. Respiratory gating in positron emission tomography: A quantitative comparison of different gating schemes. Med Phys 2007;34:3067-76.CrossRefGoogle Scholar
  13. 13.
    Alessio AM, Rahmim A, Orton CG. Resolution modeling enhances PET imaging. Med Phys 40:120601.  https://doi.org/10.1118/1.4894496
  14. 14.
    Vunckx K, Atre A, Baete K, Reilhac A, Deroose CM, Van Laere K, Nuyts J. Evaluation of three MRI-based anatomical priors for quantitative PET brain imaging. IEEE Trans Med Imaging 2012;31:599-612.CrossRefGoogle Scholar
  15. 15.
    Turco A, Nuyts J, Gheysens O, Duchenne J, Voigt J-U, Claus P, Vunckx K. Lesion quantification and detection in myocardial 18F-FDG PET using edge-preserving priors and anatomical information from CT and MRI: A simulation study. EJNMMI Phys 2016;3:1-32.CrossRefGoogle Scholar
  16. 16.
    De Man B, Basu S. Distance-driven projection and backprojection in three dimensions. Phys Med Biol 2004;49:2463.CrossRefGoogle Scholar
  17. 17.
    Brambilla M, Secco C, Dominietto M, Matheoud R, Sacchetti G, Inglese E. Performance characteristics obtained for a new 3-dimensional lutetium oxyorthosilicate based whole-body PET/CT scanner with the National Electrical Manufacturers Association NU 2-2001 Standard. J Nucl Med 2005;46:2083-91.Google Scholar
  18. 18.
    Cheng G, Alavi A, Lim E, Werner TJ, Del Bello CV, Akers SR. Dynamic changes of FDG uptake and clearance in normal tissues. Mol Imaging Biol 2013;15:345-52.CrossRefGoogle Scholar
  19. 19.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the cardiac imaging committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-42.CrossRefGoogle Scholar
  20. 20.
    Nuyts J, Mortelmans L, Suetens P, Oosterlinck A, de Rou M. Model-based quantification of myocardial perfusion images from SPECT. J Nucl Med 1989;30:1992.Google Scholar
  21. 21.
    Altman DG, Bland JM. Measurement in medicine: The analysis of method comparison studies. Statistician 1983;32:307-17.CrossRefGoogle Scholar
  22. 22.
    Rubeaux M, Doris MK, Alessio A, Slomka PJ. Enhancing cardiac PET by motion correction techniques. Curr Cardiol Rep. 2017;19:14.CrossRefGoogle Scholar
  23. 23.
    Giavarina D. Understanding Bland Altman analysis. Biochem Med. 2015;25:141-51.CrossRefGoogle Scholar
  24. 24.
    Taylor M, Wallhaus TR, DeGrado TR, Russell DC, Stanko P, Nickles RJ, et al. An evaluation of myocardial fatty acid and glucose uptake using PET with [18F] fluoro-6-thia-heptadecanoic acid and [18F] FDG in patients with congestive heart failure. J Nucl Med 2001;42:55-62.Google Scholar
  25. 25.
    Lamare F, Le Maitre A, Dawood M, Schäfers K, Fernandez P, Rimoldi O. Evaluation of respiratory and cardiac motion correction schemes in dual gated PET/CT cardiac imaging. Med Phys 2017;41:72504.CrossRefGoogle Scholar
  26. 26.
    Martinez-Möller A, Zikic D, Botnar RM, Bundschuh RA, Howe W, Ziegler SI, et al. Dual cardiac-respiratory gated PET: Implementation and results from a feasibility study. Eur J Nucl Med Mol Imaging 2007;34:1447-54.CrossRefGoogle Scholar
  27. 27.
    Büther F, Dawood M, Stegger L, Wübbeling F, Schäfers M, Schober O, et al. List mode-driven cardiac and respiratory gating in PET. J Nucl Med 2009;50:674-81.CrossRefGoogle Scholar
  28. 28.
    Gigengack F, Ruthotto L, Burger M, Wolters CH, Jiang X, Schafers KP. Motion correction in dual gated cardiac PET using mass-preserving image registration. IEEE Trans Med Imaging 2012;31:698-712.CrossRefGoogle Scholar
  29. 29.
    Cal-Gonzalez J, Lassen M, Rasul S, Beitzke D, Schaefers K, Hacker M, et al. Joint respiratory and cardiac motion compensation: Application to cardiac PET/CT and PET/MR imaging. Paper presented at the international conference on nuclear cardiology and cardiac CT (ICNC, Vienna), 2017.Google Scholar
  30. 30.
    Rahmim A, Tang J, Zaidi H. Four-dimensional image reconstruction strategies in cardiac-gated and respiratory-gated PET imaging. PET Clin 2013;8:51-67.CrossRefGoogle Scholar
  31. 31.
    Küstner T, Schwartz M, Martirosian P, Gatidis S, Seith F, Gilliam C, et al. MR-based respiratory and cardiac motion correction for PET imaging. Med Image Anal 2017;42:129-44.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2019

Authors and Affiliations

  • A. Turco
    • 1
    • 3
  • O. Gheysens
    • 1
    • 2
  • J. Duchenne
    • 3
  • J. Nuyts
    • 1
  • F. Rega
    • 3
    • 4
  • J. U. Voigt
    • 3
    • 5
  • K. Vunckx
    • 1
  • P. Claus
    • 3
    Email author
  1. 1.Department of Imaging and Pathology, Nuclear Medicine and Molecular imaging, Medical Imaging Research Center (MIRC)KU Leuven - University of LeuvenLeuvenBelgium
  2. 2.Department of Nuclear MedicineUniversity Hospitals LeuvenLeuvenBelgium
  3. 3.Department of Cardiovascular Sciences, Medical Imaging Research Center (MIRC)KU Leuven - University of LeuvenLeuvenBelgium
  4. 4.Department of Cardiac SurgeryUniversity Hospitals LeuvenLeuvenBelgium
  5. 5.Department of Cardiovascular DiseasesUniversity Hospitals LeuvenLeuvenBelgium

Personalised recommendations