Advertisement

Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2018. Part 1 of 2: Positron emission tomography, computed tomography, and magnetic resonance

  • Wael A. AlJaroudi
  • Fadi G. HageEmail author
Review Article
  • 40 Downloads

Abstract

In this review, we summarize key articles that have been published in the Journal of Nuclear Cardiology in 2018 pertaining to nuclear cardiology with advanced multi-modality and hybrid imaging including positron emission tomography, cardiac-computed tomography, and magnetic resonance. In an upcoming review, we will summarize key articles that relate to the progress made in the field of single-photon emission computed tomography. We hope that these sister reviews will be useful to the reader to navigate the literature in our field.

Keywords

CAD heart Failure sarcoid heart disease amyloid heart disease inflammation metabolic 

Notes

Disclosures

Dr. Hage reports research support from Astellas Pharma and GE Healthcare. Dr. AlJaroudi reports no conflicts of interest.

References

  1. 1.
    AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the journal of nuclear cardiology in 2014: Part 1 of 2: Positron emission tomography, computed tomography, and neuronal imaging. J Nucl Cardiol 2015;22:507-12.CrossRefGoogle Scholar
  2. 2.
    Hage FG, AlJaroudi WA. Review of cardiovascular imaging in the journal of nuclear cardiology in 2014: Part 2 of 2: Myocardial perfusion imaging. J Nucl Cardiol 2015;22:714-9.CrossRefGoogle Scholar
  3. 3.
    AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the journal of nuclear cardiology in 2015. Part 1 of 2: Plaque imaging, positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol 2016;23:122-30.CrossRefGoogle Scholar
  4. 4.
    Hage FG, AlJaroudi WA. Review of cardiovascular imaging in the journal of nuclear cardiology in 2015-part 2 of 2: Myocardial perfusion imaging. J Nucl Cardiol 2016;23:493-8.CrossRefGoogle Scholar
  5. 5.
    AlJaroudi W, Hage FG. Review of cardiovascular imaging in the journal of nuclear cardiology in 2016. Part 1 of 2: Positron emission tomography, computed tomography and magnetic resonance. J Nucl Cardiol 2017;24:649-56.CrossRefGoogle Scholar
  6. 6.
    Hage FG, AlJaroudi WA. Review of cardiovascular imaging in the journal of nuclear cardiology in 2016: Part 2 of 2-myocardial perfusion imaging. J Nucl Cardiol 2017;24:1190-9.CrossRefGoogle Scholar
  7. 7.
    AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the journal of nuclear cardiology 2017 Part 1 of 2: Positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol 2018;25:320-30.CrossRefGoogle Scholar
  8. 8.
    Hage FG, AlJaroudi WA. Review of cardiovascular imaging in the journal of nuclear cardiology in 2017 Part 2 of 2: Myocardial perfusion imaging. J Nucl Cardiol 2018;25:1390-9.CrossRefGoogle Scholar
  9. 9.
    Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res 2014;114:1852-66.CrossRefGoogle Scholar
  10. 10.
    Tarkin JM, Rudd JH. Techniques for noninvasive molecular imaging of atherosclerotic plaque. Nat Rev Cardiol 2015;12:79.CrossRefGoogle Scholar
  11. 11.
    Li X, Heber D, Cal-Gonzalez J, Karanikas G, Mayerhoefer ME, Rasul S, et al. Association between osteogenesis and inflammation during the progression of calcified plaque evaluated by (18)f-fluoride and (18)f-fdg. J Nucl Med 2017;58:968-74.CrossRefGoogle Scholar
  12. 12.
    Ferreira MJV, Oliveira-Santos M, Silva R, Gomes A, Ferreira N, Abrunhosa A, et al. Assessment of atherosclerotic plaque calcification using f18-naf pet-ct. J Nucl Cardiol 2018;25:1733-41.CrossRefGoogle Scholar
  13. 13.
    Marchesseau S, Seneviratna A, Sjoholm AT, Qin DL, Ho JXM, Hausenloy DJ, et al. Hybrid pet/ct and pet/mri imaging of vulnerable coronary plaque and myocardial scar tissue in acute myocardial infarction. J Nucl Cardiol 2017;25:1-11.Google Scholar
  14. 14.
    Moustafa A, Abi-Saleh B, El-Baba M, Hamoui O, AlJaroudi W. Anatomic distribution of culprit lesions in patients with non-st-segment elevation myocardial infarction and normal ecg. Cardiovasc Diagn Ther 2016;6:25-33.Google Scholar
  15. 15.
    Cal-Gonzalez J, Li X, Heber D, Rausch I, Moore SC, Schafers K, et al. Partial volume correction for improved pet quantification in (18)f-naf imaging of atherosclerotic plaques. J Nucl Cardiol 2018;25:1742-56.CrossRefGoogle Scholar
  16. 16.
    Alavi A, Werner TJ, Hoilund-Carlsen PF. What can be and what cannot be accomplished with pet to detect and characterize atherosclerotic plaques. J Nucl Cardiol 2017;25:12-5.Google Scholar
  17. 17.
    Tavakoli S, Vashist A, Sadeghi MM. Molecular imaging of plaque vulnerability. J Nucl Cardiol 2014;21:1112-28.CrossRefGoogle Scholar
  18. 18.
    Manabe O, Ohira H, Hirata K, Hayashi S, Naya M, Tsujino I, et al. Use of (18)f-fdg pet/ct texture analysis to diagnose cardiac sarcoidosis. Eur J Nucl Med Mol Imaging 2018.  https://doi.org/10.1007/s00259-018-4195-9.Google Scholar
  19. 19.
    Braun JJ, Kessler R, Constantinesco A, Imperiale A. 18f-fdg pet/ct in sarcoidosis management: Review and report of 20 cases. Eur J Nucl Med Mol Imaging 2008;35:1537-43.CrossRefGoogle Scholar
  20. 20.
    Wada K, Niitsuma T, Yamaki T, Masuda A, Ito H, Kubo H, et al. Simultaneous cardiac imaging to detect inflammation and scar tissue with (18)f-fluorodeoxyglucose pet/mri in cardiac sarcoidosis. J Nucl Cardiol 2016;23:1180-2.CrossRefGoogle Scholar
  21. 21.
    Nensa F, Kloth J, Tezgah E, Poeppel TD, Heusch P, Goebel J, et al. Feasibility of fdg-pet in myocarditis: Comparison to cmr using integrated pet/mri. J Nucl Cardiol 2018;25:785-94.CrossRefGoogle Scholar
  22. 22.
    Rischpler C, Langwieser N, Nekolla SG. Cardiac pet/mri enters the clinical arena! Finally. J Nucl Cardiol 2018;25:795-6.CrossRefGoogle Scholar
  23. 23.
    Tarkin JM, Joshi FR, Rudd JH. Pet imaging of inflammation in atherosclerosis. Nat Rev Cardiol 2014;11:443-57.CrossRefGoogle Scholar
  24. 24.
    Pervaiz MH, Durga S, Janoudi A, Berger K, Abela GS. Pet/cta detection of muscle inflammation related to cholesterol crystal emboli without arterial obstruction. J Nucl Cardiol 2018;25:433-40.CrossRefGoogle Scholar
  25. 25.
    Harikrishnan P, Gerard P, Jain D. (18)f-fdg for imaging microvascular injury. J Nucl Cardiol 2018;25:441-2.CrossRefGoogle Scholar
  26. 26.
    Saby L, Laas O, Habib G, Cammilleri S, Mancini J, Tessonnier L, et al. Positron emission tomography/computed tomography for diagnosis of prosthetic valve endocarditis: Increased valvular 18f-fluorodeoxyglucose uptake as a novel major criterion. J Am Coll Cardiol 2013;61:2374-82.CrossRefGoogle Scholar
  27. 27.
    Scholtens AM, Swart LE, Verberne HJ, Budde RPJ, Lam M. Dual-time-point fdg pet/ct imaging in prosthetic heart valve endocarditis. J Nucl Cardiol 2017;25:1960-7.CrossRefGoogle Scholar
  28. 28.
    Schindler TH. Another potential step to improve prosthetic heart valve endocarditis imaging with (18)f-fdg pet/ct. J Nucl Cardiol 2017;25:1968-70.CrossRefGoogle Scholar
  29. 29.
    Knaapen P, Germans T, Knuuti J, Paulus WJ, Dijkmans PA, Allaart CP, et al. Myocardial energetics and efficiency: Current status of the noninvasive approach. Circulation 2007;115:918-27.CrossRefGoogle Scholar
  30. 30.
    Nesterov SV, Turta O, Han C, Maki M, Lisinen I, Tuunanen H, et al. C-11 acetate has excellent reproducibility for quantification of myocardial oxidative metabolism. Eur Heart J Cardiovasc Imaging 2015;16:500-6.CrossRefGoogle Scholar
  31. 31.
    Harms HJ, Hansson NHS, Kero T, Baron T, Tolbod LP, Kim WY, et al. Automatic calculation of myocardial external efficiency using a single (11)c-acetate pet scan. J Nucl Cardiol. 2018;25:1937-44.CrossRefGoogle Scholar
  32. 32.
    Wu KY, Dinculescu V, Renaud JM, Chen SY, Burwash IG, Mielniczuk LM, et al. Repeatable and reproducible measurements of myocardial oxidative metabolism, blood flow and external efficiency using (11)c-acetate pet. J Nucl Cardiol 2018;25:1912-25.CrossRefGoogle Scholar
  33. 33.
    Bengel FM. Pet-based myocardial efficiency: Powerful yet under-utilized-now simpler than ever. J Nucl Cardiol 2018;25:1945-7.CrossRefGoogle Scholar
  34. 34.
    Hu L, Qiu C, Wang X, Xu M, Shao X, Wang Y. The association between diabetes mellitus and reduction in myocardial glucose uptake: A population-based (18)f-fdg pet/ct study. BMC Cardiovasc Disord 2018;18:203.CrossRefGoogle Scholar
  35. 35.
    Aljaroudi W, Alraies MC, Halley C, Rodriguez L, Grimm RA, Thomas JD, et al. Impact of progression of diastolic dysfunction on mortality in patients with normal ejection fraction. Circulation 2012;125:782-8.CrossRefGoogle Scholar
  36. 36.
    AlJaroudi WA, Thomas JD, Rodriguez LL, Jaber WA. Prognostic value of diastolic dysfunction: State of the art review. Cardiol Rev 2014;22:79-90.CrossRefGoogle Scholar
  37. 37.
    AlJaroudi WA, Alraies MC, Halley C, Menon V, Rodriguez LL, Grimm RA, et al. Incremental prognostic value of diastolic dysfunction in low risk patients undergoing echocardiography: Beyond framingham score. Int J Cardiovasc Imaging 2013;29:1441-50.CrossRefGoogle Scholar
  38. 38.
    Nielsen R, Jorsal A, Iversen P, Tolbod L, Bouchelouche K, Sorensen J, et al. Heart failure patients with prediabetes and newly diagnosed diabetes display abnormalities in myocardial metabolism. J Nucl Cardiol 2018;25:169-76.CrossRefGoogle Scholar
  39. 39.
    Gargiulo P, Perrone-Filardi P. Heart failure, whole-body insulin resistance and myocardial insulin resistance: An intriguing puzzle. J Nucl Cardiol 2018;25:177-80.CrossRefGoogle Scholar
  40. 40.
    Patel MR, Cawley PJ, Heitner JF, Klem I, Parker MA, Jaroudi WA, et al. Detection of myocardial damage in patients with sarcoidosis. Circulation 2009;120:1969-77.CrossRefGoogle Scholar
  41. 41.
    Zandieh S, Bernt R, Mirzaei S, Haller J, Hergan K. Image fusion between 18f-fdg pet and mri in cardiac sarcoidosis: A case series. J Nucl Cardiol 2018;25:1128-34.CrossRefGoogle Scholar
  42. 42.
    Kobylecka M, Budnik M, Kochanowski J, Piatkowski R, Chojnowski M, Fronczewska-Wieniawska K, et al. Takotsubo cardiomyopathy: Fdg myocardial uptake pattern in fasting patients. Comparison of pet/ct, spect, and echo results. J Nucl Cardiol 2018;25:1260-70.CrossRefGoogle Scholar
  43. 43.
    Bhambhvani P. Under the hood of the stunned takotsubo heart. J Nucl Cardiol 2018;25:1271-3.CrossRefGoogle Scholar
  44. 44.
    Aljaroudi WA, Desai MY, Tang WH, Phelan D, Cerqueira MD, Jaber WA. Role of imaging in the diagnosis and management of patients with cardiac amyloidosis: State of the art review and focus on emerging nuclear techniques. J Nucl Cardiol 2014;21:271-83.CrossRefGoogle Scholar
  45. 45.
    Soman P, Masri A. Setting the stage for the next step in cardiac amyloidosis imaging: Serial quantitative studies to assess disease activity. J Nucl Cardiol 2018;25:1571-3.CrossRefGoogle Scholar
  46. 46.
    Morgenstern R, Yeh R, Castano A, Maurer MS, Bokhari S. (18)fluorine sodium fluoride positron emission tomography, a potential biomarker of transthyretin cardiac amyloidosis. J Nucl Cardiol 2018;25:1559-67.CrossRefGoogle Scholar
  47. 47.
    Pilebro B, Arvidsson S, Lindqvist P, Sundstrom T, Westermark P, Antoni G, et al. Positron emission tomography (pet) utilizing pittsburgh compound b (pib) for detection of amyloid heart deposits in hereditary transthyretin amyloidosis (attr). J Nucl Cardiol 2018;25:240-8.CrossRefGoogle Scholar
  48. 48.
    Ghotbi AA, Kjaer A, Nepper-Christensen L, Ahtarovski KA, Lonborg JT, Vejlstrup N, et al. Subacute cardiac rubidium-82 positron emission tomography ((82)rb-pet) to assess myocardial area at risk, final infarct size, and myocardial salvage after stemi. J Nucl Cardiol 2018;25:970-81.CrossRefGoogle Scholar
  49. 49.
    Andrikopoulou E, Lloyd SG. Could (82)rb-pet be the next best thing in evaluation of myocardial salvage? J Nucl Cardiol 2018;25:982-5.CrossRefGoogle Scholar
  50. 50.
    Kiugel M, Kyto V, Saanijoki T, Liljenback H, Metsala O, Stahle M, et al. Evaluation of (68)ga-labeled peptide tracer for detection of gelatinase expression after myocardial infarction in rat. J Nucl Cardiol 2018;25:1114-23.CrossRefGoogle Scholar
  51. 51.
    Pryds K, Nielsen RR, Hoff CM, Tolbod LP, Bouchelouche K, Li J, et al. Effect of remote ischemic conditioning on myocardial perfusion in patients with suspected ischemic coronary artery disease. J Nucl Cardiol 2018;25:887-96.CrossRefGoogle Scholar
  52. 52.
    Piccinelli M, Santana C, Sirineni GKR, Folks RD, Cooke CD, Arepalli CD, et al. Diagnostic performance of the quantification of myocardium at risk from mpi spect/cta 2g fusion for detecting obstructive coronary disease: A multicenter trial. J Nucl Cardiol 2018;25:1376-86.CrossRefGoogle Scholar
  53. 53.
    Slomka P. Hybrid quantitative imaging: Will it enter clinical practice? J Nucl Cardiol 2018;25:1387-9.CrossRefGoogle Scholar
  54. 54.
    Giubbini R, Peli A, Milan E, Sciagra R, Camoni L, Albano D, et al. Comparison between the summed difference score and myocardial blood flow measured by (13)n-ammonia. J Nucl Cardiol 2018;25:1621-8.CrossRefGoogle Scholar
  55. 55.
    Sharir T, Kovalski G. Absolute myocardial blood flow vs relative myocardial perfusion: Which one is better? J Nucl Cardiol 2018;25:1629-32.CrossRefGoogle Scholar
  56. 56.
    Juarez-Orozco LE, Alexanderson E, Dierckx RA, Boersma HH, Hillege JL, Zeebregts CJ, et al. Stress myocardial blood flow correlates with ventricular function and synchrony better than myocardial perfusion reserve: A nitrogen-13 ammonia pet study. J Nucl Cardiol 2018;25:797-806.CrossRefGoogle Scholar
  57. 57.
    Giubbini R, Peli A. Left ventricular function during hyperemia: A dive into the unknown. J Nucl Cardiol 2018;25:807-8.CrossRefGoogle Scholar
  58. 58.
    Green R, Cantoni V, Petretta M, Acampa W, Panico M, Buongiorno P, et al. Negative predictive value of stress myocardial perfusion imaging and coronary computed tomography angiography: A meta-analysis. J Nucl Cardiol 2018;25:1588-97.CrossRefGoogle Scholar
  59. 59.
    Patel N, Bajaj NS. Meta-analyses: How to critically appraise them? J Nucl Cardiol 2018;25:1598-600.CrossRefGoogle Scholar
  60. 60.
    Han D, Lee JH, Rizvi A, Gransar H, Baskaran L, Schulman-Marcus J, et al. Incremental role of resting myocardial computed tomography perfusion for predicting physiologically significant coronary artery disease: A machine learning approach. J Nucl Cardiol 2018;25:223-33.CrossRefGoogle Scholar
  61. 61.
    Nappi C, Nicolai E, Daniele S, Acampa W, Gaudieri V, Assante R, et al. Long-term prognostic value of coronary artery calcium scanning, coronary computed tomographic angiography and stress myocardial perfusion imaging in patients with suspected coronary artery disease. J Nucl Cardiol 2018;25:833-41.CrossRefGoogle Scholar
  62. 62.
    Robinson AA, Bourque JM. Combined non-invasive imaging for predicting cardiovascular events : Is three a crowd? J Nucl Cardiol 2018;25:842-4.CrossRefGoogle Scholar
  63. 63.
    Isgum I, de Vos BD, Wolterink JM, Dey D, Berman DS, Rubeaux M, et al. Automatic determination of cardiovascular risk by ct attenuation correction maps in rb-82 pet/ct. J Nucl Cardiol 2017;25:2133-42.CrossRefGoogle Scholar
  64. 64.
    Dumeer S, Einstein AJ. Coronary calcium scoring of ct attenuation correction scans: Automatic, manual, or visual? J Nucl Cardiol 2017;25:2144-7.CrossRefGoogle Scholar
  65. 65.
    Allam AHA, Thompson RC, Eskander MA, Mandour Ali MA, Sadek A, Rowan CJ, et al. Is coronary calcium scoring too late? Total body arterial calcium burden in patients without known cad and normal mpi. J Nucl Cardiol 2017;25:1990-8.CrossRefGoogle Scholar
  66. 66.
    Qureshi WT, Alirhayim Z, Khalid F, Al-Mallah MH. Prognostic value of extracardiac incidental findings on attenuation correction cardiac computed tomography. J Nucl Cardiol 2016;23:1266-74.CrossRefGoogle Scholar
  67. 67.
    Zadro C, Roussel N, Cassol E, Pascal P, Petermann A, Meyrignac O, et al. Prognostic impact of myocardial perfusion single photon emission computed tomography in patients with major extracardiac findings by computed tomography for attenuation correction. J Nucl Cardiol 2018;25:1574-83.CrossRefGoogle Scholar
  68. 68.
    Benz DC, Fuchs TA. Extracardiac findings on computed tomography attenuation correction: Is it worth paying extra attention? J Nucl Cardiol 2018;25:1584-7.CrossRefGoogle Scholar
  69. 69.
    Manabe O, Yoshinaga K, Ohira H, Masuda A, Sato T, Tsujino I, et al. The effects of 18-h fasting with low-carbohydrate diet preparation on suppressed physiological myocardial (18)f-fluorodeoxyglucose (fdg) uptake and possible minimal effects of unfractionated heparin use in patients with suspected cardiac involvement sarcoidosis. J Nucl Cardiol 2016;23:244-52.CrossRefGoogle Scholar
  70. 70.
    Giorgetti A, Marras G, Genovesi D, Filidei E, Bottoni A, Mangione M, et al. Effect of prolonged fasting and low molecular weight heparin or warfarin therapies on 2-deoxy-2-[18f]-fluoro-d-glucose pet cardiac uptake. J Nucl Cardiol 2018;25:1364-71.CrossRefGoogle Scholar
  71. 71.
    Andrikopoulou E, Bhambhvani P. Optimizing myocardial metabolism for fluorine-18 fluorodeoxyglucose positron emission tomography imaging of cardiac inflammation. J Nucl Cardiol 2018;25:1372-5.CrossRefGoogle Scholar
  72. 72.
    Ziadi MC, Dekemp RA, Williams K, Guo A, Renaud JM, Chow BJ, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol 2012;19:670-80.CrossRefGoogle Scholar
  73. 73.
    Klein R, Ocneanu A, Renaud JM, Ziadi MC, Beanlands RSB, deKemp RA. Consistent tracer administration profile improves test-retest repeatability of myocardial blood flow quantification with (82)rb dynamic pet imaging. J Nucl Cardiol 2018;25:929-41.CrossRefGoogle Scholar
  74. 74.
    Case J. Accurate myocardial blood flow measurements: Quality from start to finish is key to success. J Nucl Cardiol 2018;25:942-6.CrossRefGoogle Scholar
  75. 75.
    Armstrong IS, Memmott MJ, Tonge CM, Arumugam P. The impact of prompt gamma compensation on myocardial blood flow measurements with rubidium-82 dynamic PET. J Nucl Cardiol 2018;25:596-605.CrossRefGoogle Scholar
  76. 76.
    Moncayo VM, Garcia EV. Prompt-gamma compensation in rb-82 myocardial perfusion 3d pet/ct: Effect on clinical practice. J Nucl Cardiol 2018;25:606-8.CrossRefGoogle Scholar
  77. 77.
    Memmott MJ, Tonge CM, Saint KJ, Arumugam P. Impact of pharmacological stress agent on patient motion during rubidium-82 myocardial perfusion PET/CT. J Nucl Cardiol 2018;25:1286-95.CrossRefGoogle Scholar
  78. 78.
    Cremer PC, DiFilippo FP, Jaber WA. Moving towards a better understanding of potential pitfalls in quantitative pet myocardial blood flow. J Nucl Cardiol 2018;25:1296-8.CrossRefGoogle Scholar
  79. 79.
    Ichikawa Y, Tomita Y, Ishida M, Kobayashi S, Takeda K, Sakuma H. Usefulness of abdominal belt for restricting respiratory cardiac motion and improving image quality in myocardial perfusion pet. J Nucl Cardiol 2018;25:407-15.CrossRefGoogle Scholar
  80. 80.
    Pan T. Respiratory gating in PET/CT: A step in the right direction. J Nucl Cardiol 2018;25:416-8.CrossRefGoogle Scholar
  81. 81.
    Dasari PKR, Jones JP, Casey ME, Liang Y, Dilsizian V, Smith MF. The effect of time-of-flight and point spread function modeling on (82)rb myocardial perfusion imaging of obese patients. J Nucl Cardiol 2018;25:1521-45.CrossRefGoogle Scholar
  82. 82.
    Armstrong IS. Understanding the impact of advanced pet reconstruction in cardiac PET: The devil is in the details. J Nucl Cardiol 2018;25:1546-9.CrossRefGoogle Scholar
  83. 83.
    Matheoud R, Lecchi M, et al. Time-of-flight in cardiac PET/CT: What do we know and what we should know? J Nucl Cardiol 2018.  https://doi.org/10.1007/s12350-018-1336-2.Google Scholar
  84. 84.
    Ather S, Iqbal F, Gulotta J, Aljaroudi W, Heo J, Iskandrian AE, et al. Comparison of three commercially available softwares for measuring left ventricular perfusion and function by gated SPECT myocardial perfusion imaging. J Nucl Cardiol 2014;21:673-81.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2019

Authors and Affiliations

  1. 1.Division of Cardiovascular MedicineClemenceau Medical CenterBeirutLebanon
  2. 2.Division of Cardiovascular Disease, Department of MedicineUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.Section of CardiologyBirmingham Veterans Affairs Medical CenterBirminghamUSA

Personalised recommendations