Comparison of the dyssynchrony parameters recorded with gated SPECT in ischemic cardiomyopathy according to their repeatability at rest and to their ability to detect a synchrony reserve under dobutamine infusion

  • Damien Legallois
  • Pierre-Yves Marie
  • Philippe R. Franken
  • Wassila Djaballah
  • Denis Agostini
  • Alain ManriqueEmail author
Original Article



This study aimed to determine whether the repeatability of dyssynchrony assessment using gated myocardial perfusion SPECT (GSPECT) allows the detection of synchrony reserve during low-dose dobutamine infusion.

Methods and Results

Sixty-one patients with ischemic cardiomyopathy and LV ejection fraction < 50% were prospectively included in 10 centers. Each patient underwent two consecutive rest GSPECT with 99mTc-labeled tracer (either tetrofosmin or sestamibi) to assess the repeatability of LV function and dyssynchrony parameters, followed by a GSECT acquisition during low-dose dobutamine infusion. LV dyssynchrony was assessed using QGS software through histogram bandwidth (BW), standard deviation of the phase (SD), and entropy. Repeatability was assessed with Lin’s concordance correlation coefficient (CCC). Entropy showed a higher CCC (0.80) compared to BW (0.68) and SD (0.75). On average, dobutamine infusion yielded to improve both BW (P = .049) and entropy (P = .04) although significant improvements, setting outside the 95% confidence interval of the repeatability analysis, were documented in only 6 and 4 patients for BW and entropy, respectively.


A synchrony reserve may be documented in patients with ischemic cardiomyopathy through the recording of BW and entropy with low-dose dobutamine GSPECT, with the additional advantage of a higher repeatability for entropy.


Gated single-photon emission computed tomography heart failure ischemic cardiomyopathy left ventricular dyssynchrony dobutamine infusion 



Bandwidth of the phase


Concordance correlation coefficient


Low-dose dobutamine stress gated single-photon emission computed tomography


Gated myocardial perfusion single-photon emission computed tomography


Left ventricular


Left ventricular ejection fraction


Standard deviation of the phase


Single-photon emission computed tomography


Summed rest score


Wall thickening score



Sabrina PROD’HOMME is acknowledged for her technical assistance. MJ Alibelli (Centre Hospitalier Universitaire Rangueil, Toulouse, France), H Benhabib (Centre Hospitalier de Corbeil, Corbeil, France), A Devillers (CRLCC Eugène Marquis, Rennes, France), V Eder (Centre Hospitalier Universitaire Trousseau, Tours, France), P Guillo (Centre Hospitalier Universitaire de la Cavale Blanche, Brest, France), JF Toussaint (Hôpital Européen George Pompidou, Paris, France), and P Weinmann (Hôpital Avicenne, Bobigny, France) are acknowledged for their participation in this study.


The authors have indicated that they have no financial conflict of interest.

Supplementary material

12350_2018_1546_MOESM1_ESM.doc (73 kb)
Supplementary material 1 (DOC 73 kb)
12350_2018_1546_MOESM2_ESM.pptx (1.1 mb)
Supplementary material 2 (PPTX 1097 kb)


  1. 1.
    Zhang Y, Chan AK, Yu CM, Lam WW, Yip GW, Fung WH, et al. Left ventricular systolic asynchrony after acute myocardial infarction in patients with narrow QRS complexes. Am Heart J 2005;149:497-503.CrossRefGoogle Scholar
  2. 2.
    Opolski G, Kraska T, Ostrzycki A, Zieliński T, Korewicki J. The effect of infarct size on atrioventricular and intraventricular conduction disturbances in acute myocardial infarction. Int J Cardiol 1986;10:141-7.CrossRefGoogle Scholar
  3. 3.
    Shin SH, Hung CL, Uno H, Hassanein AH, Verma A, Bourgoun M, et al. Mechanical dyssynchrony after myocardial infarction in patients with left ventricular dysfunction, heart failure, or both. Circulation 2010;121:1096-103.CrossRefGoogle Scholar
  4. 4.
    Mollema SA, Liem SS, Suffoletto MS, Bleeker GB, van der Hoeven BL, van de Veire NR, et al. Left ventricular dyssynchrony acutely after myocardial infarction predicts left ventricular remodeling. J Am Coll Cardiol 2007;50:1532-40.CrossRefGoogle Scholar
  5. 5.
    Manrique A, Lemarchand P, Delasalle B, Lairez O, Sportouch-Duckan C, Lamirault G, et al. Predictors of ventricular remodelling in patients with reperfused acute myocardial infarction and left ventricular dysfunction candidates for bone marrow cell therapy: Insights from the BONAMI trial. Eur J Nucl Med Mol Imaging 2016;43:740-8.CrossRefGoogle Scholar
  6. 6.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016;37:2129-200.CrossRefGoogle Scholar
  7. 7.
    Yoshinaga K, Morita K, Yamada S, Komuro K, Katoh C, Ito Y, et al. Low-dose dobutamine electrocardiograph-gated myocardial SPECT for identifying viable myocardium: Comparison with dobutamine stress echocardiography and PET. J Nucl Med 2001;42:838-44.Google Scholar
  8. 8.
    Salimian S, Thibault B, Finnerty V, Grégoire J, Harel F. The effects of dobutamine stress on cardiac mechanical synchrony determined by phase analysis of gated SPECT myocardial perfusion imaging in a canine model. J Nucl Cardiol 2014;21:375-83.CrossRefGoogle Scholar
  9. 9.
    Stankovic I, Aarones M, Smith HJ, Vörös G, Kongsgaard E, Neskovic AN, et al. Dynamic relationship of left-ventricular dyssynchrony and contractile reserve in patients undergoing cardiac resynchronization therapy. Eur Heart J 2014;35:48-55.CrossRefGoogle Scholar
  10. 10.
    Jiang Z, Tang H, Shi J, Zhou Y, Wang C, Li D, Shan Q, Zhou W. Myocardial stunning-induced left ventricular dyssynchrony on gated single-photon emission computed tomography myocardial perfusion imaging. Nucl Med Commun 2018;39:725-31.Google Scholar
  11. 11.
    Bax JJ, Bleeker GB, Marwick TH, Molhoek SG, Boersma E, Steendijk P, et al. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol 2004;44:1834-40.CrossRefGoogle Scholar
  12. 12.
    Suffoletto MS, Dohi K, Cannesson M, Saba S, Gorcsan J 3rd. Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. Circulation 2006;113:960-8.CrossRefGoogle Scholar
  13. 13.
    Yamamoto A, Takahashi N, Munakata K, Hosoya T, Shiiba M, Okuyama T, et al. Global and regional evaluation of systolic and diastolic left ventricular temporal parameters using a novel program for ECG-gated myocardial perfusion SPECT-validation by comparison with gated equilibrium radionuclide angiography and speckle-tracking radial strain from echocardiography. Ann Nucl Med 2007;21:115-21.CrossRefGoogle Scholar
  14. 14.
    Boogers MM, Van Kriekinge SD, Henneman MM, Ypenburg C, Van Bommel RJ, Boersma E, et al. Quantitative gated SPECT-derived phase analysis on gated myocardial perfusion SPECT detects left ventricular dyssynchrony and predicts response to cardiac resynchronization therapy. J Nucl Med 2009;50:718-25.CrossRefGoogle Scholar
  15. 15.
    Hsu TH, Huang WS, Chen CC, Hung GU, Chen TC, Kao CH, Chen J. Left ventricular systolic and diastolic dyssynchrony assessed by phase analysis of gated SPECT myocardial perfusion imaging: A comparison with speckle tracking echocardiography. Ann Nucl Med 2013;27:764-71.CrossRefGoogle Scholar
  16. 16.
    Lin X, Xu H, Zhao X, Folks RD, Garcia EV, Soman P, et al. Repeatability of left ventricular dyssynchrony and function parameters in serial gated myocardial perfusion SPECT studies. J Nucl Cardiol 2010;17:811-6.CrossRefGoogle Scholar
  17. 17.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. J Nucl Cardiol 2002;9:240-5.CrossRefGoogle Scholar
  18. 18.
    O’Connell JW, Schreck C, Moles M, Badwar N, DeMarco T, Olgin J, et al. A unique method by which to quantitate synchrony with equilibrium radionuclide angiography. J Nucl Cardiol 2005;12:441-50.CrossRefGoogle Scholar
  19. 19.
    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-10.CrossRefGoogle Scholar
  20. 20.
    Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989;45:255-68.CrossRefGoogle Scholar
  21. 21.
    Van Kriekinge SD, Nishina H, Ohba M, Berman DS, Germano G. Automatic global and regional phase analysis from gated myocardial perfusion SPECT imaging: Application to the characterization of ventricular contraction in patients with left bundle branch block. J Nucl Med 2008;49:1790-7.CrossRefGoogle Scholar
  22. 22.
    Boogers MJ, Chen J, Veltman CE, van Bommel RJ, Mooyaart EA, Al Younis I, et al. Left ventricular diastolic dyssynchrony assessed with phase analysis of gated myocardial perfusion SPECT: A comparison with tissue Doppler imaging. Eur J Nucl Med Mol Imaging 2011;38:2031-9.CrossRefGoogle Scholar
  23. 23.
    Trimble MA, Velazquez EJ, Adams GL, Honeycutt EF, Pagnanelli RA, Barnhart HX, et al. Repeatability and reproducibility of phase analysis of gated SPECT myocardial perfusion imaging used to quantify cardiac dyssynchrony. Nucl Med Commun 2008;29:374-81.CrossRefGoogle Scholar
  24. 24.
    AlJaroudi W, Jaber WA, Grimm RA, Marwick T, Cerqueira MD. Alternative methods for the assessment of mechanical dyssynchrony using phase analysis of gated single photon emission computed tomography myocardial perfusion imaging. Int J Cardiovasc Imaging 2012;28:1385-94.CrossRefGoogle Scholar
  25. 25.
    AlJaroudi W, Jaber WA, Cerqueira MD. Effect of tracer dose on left ventricular mechanical dyssynchrony indices by phase analysis of gated single photon emission computed tomography myocardial perfusion imaging. J Nucl Cardiol 2012;19:63-72.CrossRefGoogle Scholar
  26. 26.
    Marie PY, Djaballah W, Franken PR, Vanhove C, Muller MA, Boutley H, et al. OSEM reconstruction, associated with temporal fourier and depth-dependant resolution recovery filtering, enhances results from sestamibi and 201Tl 16-interval gated SPECT. J Nucl Med 2005;46:1789-95.Google Scholar
  27. 27.
    Bailliez A, Lairez O, Merlin C, Piriou N, Legallois D, Blaire T, et al. Left ventricular function assessment using 2 different cadmium-zinc-telluride cameras compared with a γ-camera with cardiofocal collimators: dynamic cardiac phantom study and clinical validation. J Nucl Med 2016;57:1370-5.CrossRefGoogle Scholar
  28. 28.
    Chattopadhyay S, Alamgir MF, Nikitin NP, Fraser AG, Clark AL, Cleland JG. The effect of pharmacological stress on intraventricular dyssynchrony in left ventricular systolic dysfunction. Eur J Heart Fail 2008;10:412-20.CrossRefGoogle Scholar
  29. 29.
    Andrea A, Mele D, Nistri S, Riegler L, Galderisi M, Agricola E, et al. Working Group Nucleus on Echocardiography of Italian Society of Cardiology. The prognostic impact of dynamic ventricular dyssynchrony in patients with idiopathic dilated cardiomyopathy and narrow QRS. Eur Heart J Cardiovasc Imaging 2013;14:183-9.CrossRefGoogle Scholar
  30. 30.
    Yagishita-Tagawa Y, Abe Y, Arai K, Yagishita D, Takagi A, Ashihara K, et al. Low-dose dobutamine induces left ventricular mechanical dyssynchrony in patients with dilated cardiomyopathy and a narrow QRS: A study using real-time three-dimensional echocardiography. J Cardiol 2013;61:275-80.CrossRefGoogle Scholar
  31. 31.
    Chan J, Jenkins C, Khafagi F, Du L, Marwick TH. What is the optimal clinical technique for measurement of left ventricular volume after myocardial infarction? A comparative study of 3-dimensional echocardiography, single photon emission computed tomography, and cardiac magnetic resonance imaging. J Am Soc Echocardiogr 2006;19:192-201.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2018

Authors and Affiliations

  • Damien Legallois
    • 1
    • 2
  • Pierre-Yves Marie
    • 3
  • Philippe R. Franken
    • 4
  • Wassila Djaballah
    • 3
  • Denis Agostini
    • 1
    • 5
  • Alain Manrique
    • 1
    • 5
    • 6
    Email author
  1. 1.Normandie Université, UNICAEN, Signalisation, électrophysiologie et imagerie des lésions d’ischémie-reperfusion myocardiqueFHU REMOD-VHFCaenFrance
  2. 2.Department of CardiologyCHU de CaenCaenFrance
  3. 3.Department of Nuclear MedicineCHU de NancyNancyFrance
  4. 4.AZ-VUB Nuclear Medicine JetteBrusselsBelgium
  5. 5.Department of Nuclear MedicineCHU de CaenCaenFrance
  6. 6.Investigations chez l’HommeGIP Cyceron PET CenterCaenFrance

Personalised recommendations