Advertisement

Quantitative blood flow evaluation of vasodilation-stress compared with dobutamine-stress in patients with end-stage liver disease using 82Rb PET/CT

  • Jonathan T. AbeleEmail author
  • Monique Raubenheimer
  • Vincent G. Bain
  • Greg Wandzilak
  • Naji AlHulaimi
  • Richard Coulden
  • Robert A. deKemp
  • Ran Klein
  • Randall G. Williams
  • Robert S. Warshawski
  • Lucille D. Lalonde
Original Article

Abstract

Background

Our aim was to determine if end-stage liver disease (ESLD) is associated with an attenuated response to vasodilator-stress or dobutamine-stress using 82Rb-PET MPI with blood flow quantification.

Methods and Results

Pre-liver transplant patients who had a normal dipyridamole-stress (n = 27) or dobutamine-stress (n = 26) 82Rb PET/CT MPI study with no identifiable coronary artery calcium were identified retrospectively and compared to a prospectively identified low-risk of liver disease dipyridamole-stress control group (n = 20). The dipyridamole-stress liver disease group had a lower myocardial flow reserve (MFR) (1.89 ± 0.79) than the control group (2.79 ± 0.96, P < .05). The dobutamine-stress group had a higher MFR than both other groups (3.69 ± 1.49, P < .05). A moderate negative correlation between MELD score and MFR was demonstrated for the dipyridamole-stress liver disease group (r = − 0.473, P < .05). This correlation was not observed for the dobutamine-stress liver disease group (r = − 0.253, P = .21). The liver failure group as a whole (n = 53) had a higher resting myocardial blood flow (0.97 ± 0.33 mL/min/g) than the control group (0.82 ± 0.26, P < .05).

Conclusion

Dipyridamole demonstrates an attenuated vasodilatory response in ESLD patients compared to a non-ESLD control group related to higher resting blood flow and comparatively reduced stress blood flow. Dobutamine does not demonstrate this effect implying it may be the preferred pharmacologic MPI stress agent for ESLD patients.

Keywords

PET myocardial blood flow MPI vasodilators dobutamine CAD 

Notes

Acknowledgment

The authors would like to thank Aarondeep Shokar for his data collection contribution to this work.

Disclosures

Robert A deKemp receives royalties from Jubilant DraxImage for the sale of Ruby-Fill generators, is a consultant to Jubilant DraxImage, and receives revenue shares from the sale of FlowQuant. Ran Klein receives royalties from Jubilant DraxImage for the sale of Ruby-Fill generators, is a consultant to Jubilant DraxImage, and receives revenue shares from the sale of FlowQuant. Jonathan T. Abele, Monique Raubenheimer, Vincent G. Bain, Greg Wandzilak, Naji AlHulaimi, Richard Coulden, Randall G Williams, Robert S Warshawski and Lucille D Lalonde have nothing to declare.

Supplementary material

12350_2018_1516_MOESM1_ESM.pptx (1 mb)
Supplementary material 1 (PPTX 1051 kb)

References

  1. 1.
    Hogan BJ, Gonsalkorala E, Heneghan MA. Evaluation of coronary artery disease in potential liver transplant recipients. Liver Transpl 2017;23:386-95.CrossRefPubMedGoogle Scholar
  2. 2.
    Donovan RJ, Choi C, Ali A, Heuman DM, Fuchs M, Bavry AA, et al. Perioperative cardiovascular evaluation for orthotopic liver transplantation. Dig Dis Sci 2017;62:26-34.CrossRefPubMedGoogle Scholar
  3. 3.
    Sonny A, Kelly D, Hammel JP, Albeldawi M, Zein N, Cywinski JB. Predictors of poor outcome among older liver transplant recipients. Clin Transpl 2015;29:197-203.CrossRefGoogle Scholar
  4. 4.
    Manoushagian S, Meshkov A. Evaluation of solid organ transplant candidates for coronary artery disease. Am J Transpl 2014;14:2228-34.CrossRefGoogle Scholar
  5. 5.
    Zaky A, Bendjelid K. Appraising cardiac dysfunction in liver transplantation: An ongoing challenge. Liver Int 2015;35:12-9.CrossRefPubMedGoogle Scholar
  6. 6.
    Raval Z, Harinstein ME, Flaherty JD. Role of cardiovascular intervention as a bridge to liver transplantation. World J Gastroenterol 2014;20:10651-7.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Moller S, Bernardi M. Interactions of the heart and liver. Eur Heart J 2013;34:2804-11.CrossRefPubMedGoogle Scholar
  8. 8.
    Lentine KL, Costa SP, Weir MR, Robb JF, Fleischer LA, Kasiske BL, et al. Cardiac disease evaluation and management among kidney and liver transplantation candidates. JACC 2012;60:434-80.CrossRefPubMedGoogle Scholar
  9. 9.
    Singh V, Nilesakumar JP, Rodriguez AP, Shantha G, Arora S, Deshmukh A, et al. Percutaneous coronary intervention in patients with end-stage liver disease. Am J Cardiol 2016;117:1729-34.CrossRefPubMedGoogle Scholar
  10. 10.
    Davidson CJ, Gheorghiade M, Flaherty JD, Elliot MD, Reddy SP, Wang NC, et al. Predictive value of stress myocardial perfusion imaging in liver transplant candidates. Am J Cardiol 2002;89:359-60.CrossRefPubMedGoogle Scholar
  11. 11.
    Aydinalp A, Bal U, Atar I, Ertan C, Aktas A, Yildirir A, et al. Value of stress myocardial perfusion scanning in diagnosis of severe coronary artery disease in liver transplantation candidates. Transpl Proc 2009;41:3757-60.CrossRefGoogle Scholar
  12. 12.
    Bhutani S, Tobis J, Gevorgyan R, Sinha A, Suh W, Honda HM, et al. Accuracy of stress myocardial perfusion imaging to diagnose coronary artery disease in end stage liver disease patients. Am J Cardiol 2013;111:1057-61.CrossRefPubMedGoogle Scholar
  13. 13.
    Martinez-Palli G, Cardenas A. Pre operative cardio pulmonary assessment of the liver transplant candidate. Ann Hepatol 2011;10:421-33.PubMedGoogle Scholar
  14. 14.
    Schindler TH. Positron-emitting myocardial blood flow tracers and clinical potential. Prog Cardiovasc Dis 2015;57:588-606.CrossRefPubMedGoogle Scholar
  15. 15.
    Schindler TH. Cardiac PET/computed tomography applications and cardiovascular outcome. PET Clin 2015;10:441-59.CrossRefPubMedGoogle Scholar
  16. 16.
    Murthy VL, Lee BC, Sitek A. Comparison and prognostic validation of multiple methods of quantification of myocardial blood flow with 82Rb PET. J Nucl Med 2014;55:1952-8.CrossRefPubMedGoogle Scholar
  17. 17.
    Slomka P, Berman DS, Alexanderson E, Germano G. The role of PET quantification in cardiovascular imaging. Clin Transl Imaging 2014;2:343-58.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Renaud JM, DaSilva JN, Beanlands RSB, deKemp R. Characterizing the normal range of myocardial blood flow with 82rubidium and 13N-ammonia PET imaging. J Nucl Cardiol 2013;20:578-91.CrossRefPubMedGoogle Scholar
  19. 19.
    Nakazato R, Berman DS, Alexanderson E, Slomka P. Myocardial perfusion imaging with PET. Imaging Med 2013;5:35-46.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Saraste A, Kajander S, Han C, Nesterov SV, Knuuti J. PET: Is myocardial flow quantification a clinical reality? J Nucl Cardiol 2012;19:1044-59.CrossRefPubMedGoogle Scholar
  21. 21.
    Resch K, Sonnex E, Abele JT, Coulden R. Value of visual assessment of coronary artery calcium on non-gated attenuation correction CT performed for Rb82 myocardial perfusion PET CT. J Nucl Med 2015;56:1514.Google Scholar
  22. 22.
    Renaud JM, Mylonas I, McArdle B, Dowsley T, Yip K, Turcotte E, et al. Clinical interpretation standards and quality assurance for the multicenter PET/CT trial Rubidium-ARMI. J Nucl Med 2014;55:58-64.CrossRefPubMedGoogle Scholar
  23. 23.
    Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: stress, protocols, and tracers. J Nucl Cardiol 2016;23:606-39.CrossRefPubMedGoogle Scholar
  24. 24.
    de Kemp RA, Declerk J, Klein R, Pan X, Nakazato R, Tonge C, et al. Multisoftware reproducibility study of stress and rest myocardial blood flow assessed with 3D dynamic PET/CT and a 1-tissue-compartment model of 82Rb kinetics. J Nucl Med 2013;54:571-7.CrossRefGoogle Scholar
  25. 25.
    Meintjes M, Sathekge M, Makanjee CR. Comparison of rubidium-82 myocardial blood flow quantification with coronary calcium score for evaluation of coronary artery stenosis. Nucl Med Commun 2016;37:197-206.CrossRefPubMedGoogle Scholar
  26. 26.
    Tadamura E, Iida H, Matsumoto K, Mamede M, Kubo S, Toyoda H, et al. Comparison of myocardial blood flow during dobutamine-atropine infusion with that after dipyridamole administration in normal men. J Am Coll Cardiol 2001;37:130-6.CrossRefPubMedGoogle Scholar
  27. 27.
    Bin JP, Pelberg RA, Wei K, Le E, Goodman NC, Kaul S. Dobutamine versus dipyridamole for inducing reversible perfusion defects in chronic multivessel coronary artery stenosis. J Am Coll Cardiol 2002;40:167-74.CrossRefPubMedGoogle Scholar
  28. 28.
    Perera V, Gross AS, Xu H, McLachlan AJ. Pharmacokinetics of caffeine in plasma and saliva, and the influence of caffeine abstinence on CYP1A2 metrics. JPP 2011;63:1161-8.CrossRefPubMedGoogle Scholar
  29. 29.
    Guo Y, Hu B, Xie Y, Billiar TR, Sperry JL, Huang M, et al. Regulation of drug metabolizing enzymes by local and systemic liver injuries. Expert Opin Drug Metab Toxicol 2016;12:245-51.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2018

Authors and Affiliations

  • Jonathan T. Abele
    • 1
    • 7
    Email author
  • Monique Raubenheimer
    • 2
  • Vincent G. Bain
    • 3
  • Greg Wandzilak
    • 1
  • Naji AlHulaimi
    • 4
  • Richard Coulden
    • 1
  • Robert A. deKemp
    • 5
  • Ran Klein
    • 6
  • Randall G. Williams
    • 4
  • Robert S. Warshawski
    • 1
  • Lucille D. Lalonde
    • 4
  1. 1.Department of Radiology and Diagnostic ImagingUniversity of AlbertaEdmontonCanada
  2. 2.Faculty of Medicine and DentistryUniversity of AlbertaEdmontonCanada
  3. 3.Liver Unit, Department of MedicineUniversity of AlbertaEdmontonCanada
  4. 4.Division of Cardiology, Department of MedicineUniversity of AlbertaEdmontonCanada
  5. 5.Division of Cardiology, Department of MedicineUniversity of OttawaOttawaCanada
  6. 6.Division of Nuclear Medicine, Department of MedicineUniversity of OttawaOttawaCanada
  7. 7.Department of Radiology and Diagnostic Imaging2A2.42 Walter C MacKenzie Health Sciences Centre, University of AlbertaEdmontonCanada

Personalised recommendations