Advertisement

Journal of Nuclear Cardiology

, Volume 25, Issue 6, pp 1980–1987 | Cite as

The role of nuclear medicine in assessments of cardiac dyssynchrony

  • Masanao Naya
  • Osamu Manabe
  • Kazuhiro Koyanagawa
  • Nagara Tamaki
Review Article

Abstract

Radionuclide imaging has an advantage for quantitative analyses of the tracer concentration and its temporal changes. Myocardial perfusion and function have been adapted for synchrony analyses. Extracted parameters have been demonstrated to measure ventricular synchrony and even to predict CRT outcomes. ERNA has the advantages of higher temporal resolution, greater reproducibility, and the volumetric analysis of both ventricles that can be applied for analyses of intraventricular synchrony and interventricular synchrony. Several software packages such as Quantitative Gated SPECT, the Emory Cardiac Toolbox, cardioREPO, and Heart Function View are available to assess the LV dyssynchrony parameters from GSPECT. A count-based method is applied to extract the amplitude and phase from each of the reconstructed GSPECT short-axis datasets throughout the cardiac cycle and then subjected to a Fourier analysis, the results of which are displayed on a polar map and histogram. Some of the parameters such as the bandwidth (expressed as the 95% width of the phase histogram) and the standard deviation of the phase are obtained by the phase histogram to assess the intraventricular synchrony. This review paper focuses on the application of the LV dyssynchrony parameters estimated by cardiac SPECT in patients with a heart disease.

Keywords

Nuclear medicine radionuclide imaging cardiac dyssynchrony cardiac imaging technology 

Abbreviations

CMR

Cardiac magnetic resonance

CRT

Cardiac resynchronization therapy

ERNA

Equilibrium radionuclide angiography

GSPECT

Gated perfusion single-photon emission computed tomography

LV

Left ventricular

Notes

Disclosure

All authors have no conflicts of interest to disclose.

Supplementary material

12350_2017_1072_MOESM1_ESM.pptx (1.6 mb)
Supplementary material 1 (PPTX 1602 kb)

References

  1. 1.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013;62:e147-239.CrossRefGoogle Scholar
  2. 2.
    Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, et al. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation 2005;112:e154-235.CrossRefGoogle Scholar
  3. 3.
    Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt OA, et al. 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Eur Heart J 2013;34:2281-329.CrossRefGoogle Scholar
  4. 4.
    Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 2004;350:2140-50.CrossRefGoogle Scholar
  5. 5.
    Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 2005;352:1539-49.CrossRefGoogle Scholar
  6. 6.
    Yu CM, Chan YS, Zhang Q, Yip GW, Chan CK, Kum LC, et al. Benefits of cardiac resynchronization therapy for heart failure patients with narrow QRS complexes and coexisting systolic asynchrony by echocardiography. J Am Coll Cardiol 2006;48:2251-7.CrossRefGoogle Scholar
  7. 7.
    Ruschitzka F, Abraham WT, Singh JP, Bax JJ, Borer JS, Brugada J, et al. Cardiac-resynchronization therapy in heart failure with a narrow QRS complex. N Engl J Med 2013;369:1395-405.CrossRefGoogle Scholar
  8. 8.
    Steelant B, Stankovic I, Roijakkers I, Aarones M, Bogaert J, Desmet W, et al. The impact of infarct location and extent on LV motion patterns: implications for dyssynchrony assessment. JACC Cardiovasc Imaging 2016;9:655-64.CrossRefGoogle Scholar
  9. 9.
    Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18:1440-63.CrossRefGoogle Scholar
  10. 10.
    Quinones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA. Recommendations for quantification of doppler echocardiography: a report from the doppler quantification task force of the nomenclature and standards committee of the american society of echocardiography. J Am Soc Echocardiogr 2002;15:167-84.CrossRefGoogle Scholar
  11. 11.
    Tei C. New non-invasive index for combined systolic and diastolic ventricular function. J Cardiol 1995;26:135-6.Google Scholar
  12. 12.
    Tei C, Ling LH, Hodge DO, Bailey KR, Oh JK, Rodeheffer RJ, et al. New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function–a study in normals and dilated cardiomyopathy. J Cardiol 1995;26:357-66.Google Scholar
  13. 13.
    Yu CM, Zhang Q, Fung JW, Chan HC, Chan YS, Yip GW, et al. A novel tool to assess systolic asynchrony and identify responders of cardiac resynchronization therapy by tissue synchronization imaging. J Am Coll Cardiol 2005;45:677-84.CrossRefGoogle Scholar
  14. 14.
    Yu CM, Chau E, Sanderson JE, Fan K, Tang MO, Fung WH, et al. Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure. Circulation 2002;105:438-45.CrossRefGoogle Scholar
  15. 15.
    Lardo AC, Abraham TP, Kass DA. Magnetic resonance imaging assessment of ventricular dyssynchrony: current and emerging concepts. J Am Coll Cardiol 2005;46:2223-8.CrossRefGoogle Scholar
  16. 16.
    Helm RWK, Fernandes V, Schmidt A, Rosen B, Nazarian S, Byrne M, et al. Quantitative MRI assessment of cardiac dyssynchrony in patients with ischemic cardiomyopathy: effect of infarct location. Circulation 2005;112:472.Google Scholar
  17. 17.
    O’Dell WG, Moore CC, Hunter WC, Zerhouni EA, McVeigh ER. Three-dimensional myocardial deformations: calculation with displacement field fitting to tagged MR images. Radiology 1995;195:829-35.CrossRefGoogle Scholar
  18. 18.
    McVeigh ER, Zerhouni EA. Noninvasive measurement of transmural gradients in myocardial strain with MR imaging. Radiology 1991;180:677-83.CrossRefGoogle Scholar
  19. 19.
    Axel L, Goncalves RC, Bloomgarden D. Regional heart wall motion: two-dimensional analysis and functional imaging with MR imaging. Radiology 1992;183:745-50.CrossRefGoogle Scholar
  20. 20.
    Helm RH, Leclercq C, Faris OP, Ozturk C, McVeigh E, Lardo AC, et al. Cardiac dyssynchrony analysis using circumferential vs longitudinal strain—implications for assessing cardiac resynchronization. Circulation 2005;111:2760-7.CrossRefGoogle Scholar
  21. 21.
    Chang SA, Chang HJ, Choi SI, Chun EJ, Yoon YE, Kim HK, et al. Usefulness of left ventricular dyssynchrony after acute myocardial infarction, assessed by a tagging magnetic resonance image derived metric, as a determinant of ventricular remodeling. Am J Cardiol 2009;104:19-–23.CrossRefGoogle Scholar
  22. 22.
    Yamasaki Y, Nagao M, Abe K, Hosokawa K, Kawanami S, Kamitani T, et al. Balloon pulmonary angioplasty improves interventricular dyssynchrony in patients with inoperable chronic thromboembolic pulmonary hypertension: a cardiac MR imaging study. Int J Cardiovasc Imaging 2017;33:229-39.CrossRefGoogle Scholar
  23. 23.
    Chiribiri A, Villa AD, Sammut E, Breeuwer M, Nagel E. Perfusion dyssynchrony analysis. Eur Heart J Cardiovasc Imaging 2016;17:1414-23.CrossRefGoogle Scholar
  24. 24.
    Chen J, Garcia EV, Folks RD, Cooke CD, Faber TL, Tauxe EL, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol 2005;12:687-95.CrossRefGoogle Scholar
  25. 25.
    Fauchier L, Marie O, Casset-Senon D, Babuty D, Cosnay P, Fauchier JP. Interventricular and intraventricular dyssynchrony in idiopathic dilated cardiomyopathy: a prognostic study with fourier phase analysis of radionuclide angioscintigraphy. J Am Coll Cardiol 2002;40:2022-30.CrossRefGoogle Scholar
  26. 26.
    Chen J, Henneman MM, Trimble MA, Bax JJ, Borges-Neto S, Iskandrian AE, et al. Assessment of left ventricular mechanical dyssynchrony by phase analysis of ECG-gated SPECT myocardial perfusion imaging. J Nucl Cardiol 2008;15:127-36.CrossRefGoogle Scholar
  27. 27.
    Wassenaar R, O’Connor D, Dej B, Ruddy TD, Birnie D. Optimization and validation of radionuclide angiography phase analysis parameters for quantification of mechanical dyssynchrony. J Nucl Cardiol 2009;16:895-903.CrossRefGoogle Scholar
  28. 28.
    Mariano-Goulart D, Dechaux L, Rouzet F, Barbotte E, Caderas de Kerleau C, Rossi M, et al. Diagnosis of diffuse and localized arrhythmogenic right ventricular dysplasia by gated blood-pool SPECT. J Nucl Med 2007;48:1416-23.CrossRefGoogle Scholar
  29. 29.
    Trimble MA, Velazquez EJ, Adams GL, Honeycutt EF, Pagnanelli RA, Barnhart HX, et al. Repeatability and reproducibility of phase analysis of gated single-photon emission computed tomography myocardial perfusion imaging used to quantify cardiac dyssynchrony. Nucl Med Commun 2008;29:374-81.CrossRefGoogle Scholar
  30. 30.
    Iskandrian AS, Hakki AH. Age-related changes in left ventricular diastolic performance. Am Heart J 1986;112:75-8.CrossRefGoogle Scholar
  31. 31.
    Miller TR, Grossman SJ, Schectman KB, Biello DR, Ludbrook PA, Ehsani AA. Left ventricular diastolic filling and its association with age. Am J Cardiol 1986;58:531-5.CrossRefGoogle Scholar
  32. 32.
    Mancini GB, Slutsky RA, Norris SL, Bhargava V, Ashburn WL, Higgins CB. Radionuclide analysis of peak filling rate, filling fraction, and time to peak filling rate. Response to supine bicycle exercise in normal subjects and patients with coronary disease. Am J Cardiol 1983;51:43-51.CrossRefGoogle Scholar
  33. 33.
    Arora RR, Machac J, Goldman ME, Butler RN, Gorlin R, Horowitz SF. Atrial kinetics and left ventricular diastolic filling in the healthy elderly. J Am Coll Cardiol 1987;9:1255-60.CrossRefGoogle Scholar
  34. 34.
    Bonow RO, Vitale DF, Bacharach SL, Maron BJ, Green MV. Effects of aging on asynchronous left ventricular regional function and global ventricular filling in normal human subjects. J Am Coll Cardiol 1988;11:50-8.CrossRefGoogle Scholar
  35. 35.
    Lee KJ, Southee AE, Bautovich GJ, Freedman B, McLaughlin AF, Rossleigh MA, et al. Normalised radionuclide measures of left ventricular diastolic function. Eur J Nucl Med 1989;15:123-7.CrossRefGoogle Scholar
  36. 36.
    Muntinga HJ, van den Berg F, Knol HR, Niemeyer MG, Blanksma PK, Louwes H, et al. Normal values and reproducibility of left ventricular filling parameters by radionuclide angiography. Int J Card Imaging 1997;13:165-71 discussion 73.CrossRefGoogle Scholar
  37. 37.
    Tanaka H, Tatsumi K, Fujiwara S, Tsuji T, Kaneko A, Ryo K, et al. Effect of left ventricular dyssynchrony on cardiac sympathetic activity in heart failure patients with wide QRS duration. Circ J 2012;76:382-9.CrossRefGoogle Scholar
  38. 38.
    Nichols KJ, Van Tosh A, Wang Y, Chen J, Garcia EV, Palestro CJ, et al. Relationships between blood pool and myocardial perfusion-gated SPECT global and regional left ventricular function measurements. Nucl Med Commun 2009;30:292-9.CrossRefGoogle Scholar
  39. 39.
    Badhwar N, James J, Hoffmayer KS, O’Connell JW, Green D, De Marco T, et al. Utility of equilibrium radionuclide angiogram-derived measures of dyssynchrony to predict outcomes in heart failure patients undergoing cardiac resynchronization therapy. J Nucl Med 2016;57:1880-6.CrossRefGoogle Scholar
  40. 40.
    Nakajima K, Okuda K, Matsuo S, Kiso K, Kinuya S, Garcia EV. Comparison of phase dyssynchrony analysis using gated myocardial perfusion imaging with four software programs: Based on the Japanese Society of Nuclear Medicine working group normal database. J Nucl Cardiol 2017;24:611-21.CrossRefGoogle Scholar
  41. 41.
    Henneman MM, Chen J, Ypenburg C, Dibbets P, Bleeker GB, Boersma E, et al. Phase analysis of gated myocardial perfusion single-photon emission computed tomography compared with tissue Doppler imaging for the assessment of left ventricular dyssynchrony. J Am Coll Cardiol 2007;49:1708-14.CrossRefGoogle Scholar
  42. 42.
    Igarashi Y, Chikamori T, Hida S, Tanaka H, Shiba C, Usui Y, et al. Usefulness of phase analysis to differentiate ischemic and non-ischemic etiologies of left ventricular systolic dysfunction in patients with heart failure. Circ J 2014;78:141-50.CrossRefGoogle Scholar
  43. 43.
    Romero-Farina G, Aguade-Bruix S, Candell-Riera J, Pizzi MN, Garcia-Dorado D. Cut-off values of myocardial perfusion gated-SPECT phase analysis parameters of normal subjects, and conduction and mechanical cardiac diseases. J Nucl Cardiol 2015;22:1247-58.CrossRefGoogle Scholar
  44. 44.
    Chen CC, Shen TY, Chang MC, Hung GU, Chen WC, Kao CH, et al. Stress-induced myocardial ischemia is associated with early post-stress left ventricular mechanical dyssynchrony as assessed by phase analysis of 201Tl gated SPECT myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 2012;39:1904-9.CrossRefGoogle Scholar
  45. 45.
    Hida S, Chikamori T, Tanaka H, Igarashi Y, Shiba C, Usui Y, et al. Diagnostic value of left ventricular dyssynchrony after exercise and at rest in the detection of multivessel coronary artery disease on single-photon emission computed tomography. Circ J 2012;76:1942-52.CrossRefGoogle Scholar
  46. 46.
    Karacalioglu AO, Balta S, Emer O, Demirkol S, Celik T, Ozguven M. Phase analysis in patients with reversible perfusion defects and normal coronary arteries at angiography. Ann Nucl Med 2013;27:416-22.CrossRefGoogle Scholar
  47. 47.
    Boogers MM, Van Kriekinge SD, Henneman MM, Ypenburg C, Van Bommel RJ, Boersma E, et al. Quantitative gated SPECT-derived phase analysis on gated myocardial perfusion SPECT detects left ventricular dyssynchrony and predicts response to cardiac resynchronization therapy. J Nucl Med 2009;50:718-25.CrossRefGoogle Scholar
  48. 48.
    Hess PL, Shaw LK, Fudim M, Iskandrian AE, Borges-Neto S. The prognostic value of mechanical left ventricular dyssynchrony defined by phase analysis from gated single-photon emission computed tomography myocardial perfusion imaging among patients with coronary heart disease. J Nucl Cardiol 2017;24:482-90.CrossRefGoogle Scholar
  49. 49.
    Mori H, Isobe S, Suzuki S, Unno K, Morimoto R, Kano N, et al. Prognostic value of left ventricular dyssynchrony evaluated by gated myocardial perfusion imaging in patients with chronic kidney disease and normal perfusion defect scores. J Nucl Cardiol. 2017. doi: 10.1007/s12350-017-0889-9.Google Scholar
  50. 50.
    Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView myocardial imaging for risk evaluation in heart failure) study. J Am Coll Cardiol 2010;55:2212-21.CrossRefGoogle Scholar
  51. 51.
    Miller EO, Malhotra S, Schwartz RG. Quantitative radionuclide assessment of cardiac dyssynchrony: breakthrough in patient selection for cardiac resynchronization therapy for refractory heart failure? J Nucl Med 2016;57:1840-2.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2017

Authors and Affiliations

  • Masanao Naya
    • 1
  • Osamu Manabe
    • 2
  • Kazuhiro Koyanagawa
    • 1
  • Nagara Tamaki
    • 3
  1. 1.Department of Cardiovascular MedicineHokkaido University Graduate School of MedicineSapporoJapan
  2. 2.Department of Nuclear MedicineHokkaido University Graduate School of MedicineSapporoJapan
  3. 3.Department of RadiologyKyoto Prefectural University of MedicineKyotoJapan

Personalised recommendations