Advertisement

Journal of Nuclear Cardiology

, Volume 25, Issue 6, pp 2096–2111 | Cite as

Quantification of intramyocardial blood volume with 99mTc-RBC SPECT-CT imaging: A preclinical study

  • Hassan Mohy-ud-Din
  • Nabil E. Boutagy
  • John C. Stendahl
  • Zhen W. Zhuang
  • Albert J. Sinusas
  • Chi Liu
Original Article

Abstract

Background

Currently, there is no established non-invasive imaging approach to directly evaluate myocardial microcirculatory function in order to diagnose microvascular disease independent of co-existing epicardial disease. In this work, we developed a methodological framework for quantification of intramyocardial blood volume (IMBV) as a novel index of microcirculatory function with SPECT/CT imaging of 99mTc-labeled red blood cells (RBCs).

Methods

Dual-gated myocardial SPECT/CT equilibrium imaging of 99mTc-RBCs was performed on twelve canines under resting conditions. Five correction schemes were studied: cardiac gating with no other corrections (CG), CG with attenuation correction (CG + AC), CG + AC with scatter correction (CG + AC + SC), dual cardiorespiratory gating with AC + SC (DG + AC + SC), and DG + AC + SC with partial volume correction (DG + AC + SC + PVC). Quantification of IMBV using each approach was evaluated in comparison to those obtained from all corrections. The in vivo SPECT estimates of IMBV values were validated against those obtained from ex vivo microCT imaging of the casted hearts.

Results

The estimated IMBV with all corrections was 0.15 ± 0.03 for the end-diastolic phase and 0.11 ± 0.03 for the end-systolic phase. The cycle-dependent change in IMBV (ΔIMBV) with all corrections was 23.9 ± 8.6%. Schemes that applied no correction or partial correction resulted in significant over-estimation of IMBV and significant under-underestimation of ΔIMBV. Estimates of IMBV and ΔIMBV using all corrections were consistent with values reported in the literature using invasive techniques. In vivo SPECT estimates of IMBV strongly correlated (R2 ≥ 0.70) with ex vivo measures for the various correction schemes, while the fully corrected scheme yielded the smallest bias.

Conclusions

Non-invasive quantification of IMBV is feasible using 99mTc-RBCs SPECT/CT imaging, however, requires full compensation of physical degradation factors.

Keywords

Intramyocardial blood volume partial volume correction SPECT-CT imaging microCT coronary microcirculation cardio-respiratory motion correction 

Abbreviations

SPECT/CT

Single photon emission computed tomography/computed tomography

CECT

Contrast-enhanced CT

CTAC

Non-contrast CT for attenuation correction

CVD

Cardiovascular disease

CMD

Coronary microvascular disease

CAD

Coronary artery disease

LV, RV

Left ventricle, right ventricle

IMBV

Intramyocardial blood volume

ΔIMBV

Cycle-dependent change in IMBV

CLV-blp, Cmyo

99mTc-RBC uptake in the LV blood pool or myocardium

Notes

Acknowledgements

The authors wish to thank Dr. Eva Romito, Dr. Attila Feher, Dr. Jing Wu, Sharon Wang, Tsa Shelton, and Christi Hawley for their help in conducting the experiments.

Disclosure

Hassan Mohy-ud-Din, Nabil E. Boutagy, John C. Stendahl, Zhen W. Zhuang, Albert J. Sinusas, and Chi Liu claim no potential conflict of interests.

Ethical approval

All experiments were performed in accordance with Yale University Institutional Animal Care and Use Committee standards and approval.

Supplementary material

12350_2017_970_MOESM1_ESM.pptx (677 kb)
Supplementary material 1 (PPTX 677 kb)

References

  1. 1.
    Association AH. Heart disease and stroke statistics–at-a-glance. 2015.Google Scholar
  2. 2.
    Prior JO, Allenbach G, Valenta I, Kosinski M, Burger C, Verdun FR, et al. Quantification of myocardial blood flow with 82Rb positron emission tomography: clinical validation with 15O-water. Eur J Nucl Med Mol Imaging 2012;39:1037-47.CrossRefGoogle Scholar
  3. 3.
    Mohy-ud-Din H, Lodge MA, Rahmim A. Quantitative myocardial perfusion PET parametric imaging at the voxel-level. Phys Med Biol 2015;60:6013.CrossRefGoogle Scholar
  4. 4.
    Fiechter M, Ghadri JR, Gebhard C, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Diagnostic value of 13N-ammonia myocardial perfusion PET: added value of myocardial flow reserve. J Nucl Med 2012;53:1230-4.CrossRefGoogle Scholar
  5. 5.
    Qian J, Ge J, Baumgart D, Sack S, Haude M, Erbel R. Prevalence of microvascular disease in patients with significant coronary artery disease. Herz 1999;24:548-57.CrossRefGoogle Scholar
  6. 6.
    Fearon WF. Letter by Faron regarding article, “Primary coronary microvascular dysfunction: clinical presentation, pathophysiology, and management”. Circulation 2011;123:e212; author reply e3.Google Scholar
  7. 7.
    Lanza GA, Crea F. Primary coronary microvascular dysfunction: clinical presentation, pathophysiology, and management. Circulation 2010;121:2317-25.CrossRefGoogle Scholar
  8. 8.
    Sara JD, Widmer RJ, Matsuzawa Y, Lennon RJ, Lerman LO, Lerman A. Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. JACC 2015;8:1445-53.Google Scholar
  9. 9.
    Lin T, Rechenmacher S, Rasool S, Varadarajan P, Pai RG. Reduced survival in patients with “coronary microvascular disease”. Int J Angiol 2012;21:089-94.CrossRefGoogle Scholar
  10. 10.
    Marks DS, Gudapati S, Prisant LM, Weir B, DiDonato-Gonzalez C, Waller JL, et al. Mortality in patients with microvascular disease. J Clin Hypertens 2004;6:304-9.CrossRefGoogle Scholar
  11. 11.
    Britten MB, Zeiher AM, Schächinger V. Microvascular dysfunction in angiographically normal or mildly diseased coronary arteries predicts adverse cardiovascular long-term outcome. Coron Artery Dis 2004;15:259-64.CrossRefGoogle Scholar
  12. 12.
    Recio-Mayoral A, Mason JC, Kaski JC, Rubens MB, Harari OA, Camici PG. Chronic inflammation and coronary microvascular dysfunction in patients without risk factors for coronary artery disease. Eur Heart J 2009:ehp205.Google Scholar
  13. 13.
    Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med 2007;356:830-40.CrossRefGoogle Scholar
  14. 14.
    Selthofer-Relatić K, Bošnjak I, Kibel A. Obesity related coronary microvascular dysfunction: from basic to clinical practice. Cardiol Res Pract 2016;2016.Google Scholar
  15. 15.
    Gallucci G, Capobianco AM, Coccaro M, Venetucci A, Suriano V, Fusco V. Myocardial perfusion defects after radiation therapy and anthracycline chemotherapy for left breast cancer: a possible marker of microvascular damage. Three cases and review of the literature. Tumori 2008;94:129-33.CrossRefGoogle Scholar
  16. 16.
    Wu CC, Feldman MD, Mills JD, Manaugh CA, Fischer D, Jafar MZ, et al. Myocardial contrast echocardiography can be used to quantify intramyocardial blood volume—New insights into structural mechanisms of coronary autoregulation. Circulation 1997;96:1004-11.CrossRefGoogle Scholar
  17. 17.
    Porter TR. Capillary blood flow abnormalities in the skeletal muscle and microvascular complications in diabetes lessons that cannot be learned from larger vessels. J Am Coll Cardiol 2009;53:2184-5.CrossRefGoogle Scholar
  18. 18.
    Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 2014:CIRCULATIONAHA. 114.009625.Google Scholar
  19. 19.
    Jayaweera AR, Edwards N, Glasheen WP, Villanueva FS, Abbott RD, Kaul S. In vivo myocardial kinetics of air-filled albumin microbubbles during myocardial contrast echocardiography. Comparison with radiolabeled red blood cells. Circ Res 1994;74:1157-65.CrossRefGoogle Scholar
  20. 20.
    Judd RM, Levy BI. Effects of barium-induced cardiac contraction on large- and small-vessel intramyocardial blood volume. Circ Res 1991;68:217-25.CrossRefGoogle Scholar
  21. 21.
    Bailey DL, Willowson KP. An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med 2013;54:83-9.CrossRefGoogle Scholar
  22. 22.
    Bailey DL, Willowson KP. Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality. Eur J Nucl Med Mol Imaging 2014;41:S17-25.CrossRefGoogle Scholar
  23. 23.
    Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: design, system validation and future potential. Eur J Nucl Med Mol Imaging 2010;37:1887-902.CrossRefGoogle Scholar
  24. 24.
    Kennedy JA, Israel O, Frenkel A. 3D iteratively reconstructed spatial resolution map and sensitivity characterization of a dedicated cardiac SPECT camera. J Nucl Cardiol 2014;21:443-52.CrossRefGoogle Scholar
  25. 25.
    Chan C, Harris M, Le M, Biondi J, Grobshtein Y, Liu Y-H, et al. End-expiration respiratory gating for a high resolution stationary cardiac SPECT system. Phys Med Biol 2014;59:6267.CrossRefGoogle Scholar
  26. 26.
    Fan P, Hutton BF, Holstensson M, Ljungberg M, Pretorius PH, Prasad R, et al. Scatter and crosstalk corrections for 99mTc/123I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators. Med Phys 2015;42:6895-911.CrossRefGoogle Scholar
  27. 27.
    Shepp L, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE trans Med imaging 1982;M-1:113-22.Google Scholar
  28. 28.
    Chan C, Dey J, Grobshtein Y, Wu J, Liu Y-H, Lampert R, et al. The impact of system matrix dimension on small FOV SPECT reconstruction with truncated projections. Med Phys 2016;43:213-24.CrossRefGoogle Scholar
  29. 29.
    Chan C, Liu H, Grobshtein Y, Stacy MR, Sinusas AJ, Liu C. Simultaneous partial volume correction and noise regularization for cardiac SPECT/CT. 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference 2013.Google Scholar
  30. 30.
    Liu H, Chan C, Grobshtein Y, Ma T, Liu Y, Wang S, et al. Anatomical-based partial volume correction for low-dose dedicated cardiac SPECT/CT. Phys Med Biol 2015;60:6751.CrossRefGoogle Scholar
  31. 31.
    Vollmar S, Sué M, Klein J, Jacobs A, Herholz K. VINCI-volume imaging in neurological research, co-registration and ROIs included.Google Scholar
  32. 32.
    Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM, et al. The medical imaging interaction toolkit: challenges and advances. Int J Comput Assisted Radiol Surg 2013;8:607-20.CrossRefGoogle Scholar
  33. 33.
    Yang J, Mega M, Huang SC, Lin KP, Toga A, Small G et al. Investigation of partial volume correction methods for brain FDG-PET studies. 1995 IEEE Nucl Sci Symp Med Imaging Conf Rec 1-3 1996:1670-4.Google Scholar
  34. 34.
    Liu Y, Bahn RC, Ritman EL. Dynamic intramyocardial blood volume: evaluation with a radiological opaque marker method. Am J Physiol-Heart C 1992;263:H963-7.CrossRefGoogle Scholar
  35. 35.
    Wu X, Ewert D, Liu Y, Ritman EL. In vivo relation of intramyocardial blood volume to myocardial perfusion. Evidence supporting microvascular site for autoregulation. Circulation 1992;85:730-7.CrossRefGoogle Scholar
  36. 36.
    McCommis KS, Goldstein TA, Zhang H, Misselwitz B, Gropler RJ, Zheng J. Quantification of myocardial blood volume during dipyridamole and doubtamine stress: a perfusion CMR study. J Cardiovasc Magn Reson 2007;9:785-92.CrossRefGoogle Scholar
  37. 37.
    Morgenstern C, Höljes U, Arnold G, Lochner W. The influence of coronary pressure and coronary flow on intracoronary blood volume and geometry of the left ventricle. Pflügers Archiv 1973;340:101-11.CrossRefGoogle Scholar
  38. 38.
    Kassab GS, Lin DH, Fung Y. Morphometry of pig coronary venous system. Am J Physiol-Heart C 1994;267:H2100-13.CrossRefGoogle Scholar
  39. 39.
    Hoffman E, Ritman E. Intramyocardial blood volume—implications for analysis of myocardial mechanical characteristics via in vivo imaging of the heart. Activ Metab Perfus Heart 1987; 421-32.Google Scholar
  40. 40.
    Spaan J. Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ Res 1985;56:293-309.CrossRefGoogle Scholar
  41. 41.
    Pascotto M, Wei K, Micari A, Bragadeesh T, Goodman NC, Kaul S. Phasic changes in arterial blood volume is influenced by collateral blood flow: implications for the quantification of coronary stenosis at rest. Heart 2007;93:438-43.CrossRefGoogle Scholar
  42. 42.
    Heusch G. Heart rate in the pathophysiology of coronary blood flow and myocardial ischaemia: benefit from selective bradycardic agents. Br J Pharmacol 2008;153:1589-601.CrossRefGoogle Scholar
  43. 43.
    Spaan JA, Breuls NP, Laird JD. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res 1981;49:584-93.CrossRefGoogle Scholar
  44. 44.
    Duncker DJ, Koller A, Merkus D, Canty JM. Regulation of coronary blood flow in health and ischemic heart disease. Prog Cardiovasc Dis 2015;57:409-22.CrossRefGoogle Scholar
  45. 45.
    Tsuiki K, Ritman EL. Direct evidence that left ventricular myocardium is incompressible throughout systole and diastole. Tohoku J Exper Med 1980;132:119-20.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2017

Authors and Affiliations

  • Hassan Mohy-ud-Din
    • 1
    • 3
  • Nabil E. Boutagy
    • 2
  • John C. Stendahl
    • 2
  • Zhen W. Zhuang
    • 2
  • Albert J. Sinusas
    • 1
    • 2
  • Chi Liu
    • 1
  1. 1.Department of Radiology and Biomedical ImagingYale UniversityNew HavenUSA
  2. 2.Section of Cardiovascular Medicine, Department of MedicineYale University School of MedicineNew HavenUSA
  3. 3.Shaukat Khanum Memorial Cancer Hospital and Research CenterLahorePakistan

Personalised recommendations