Advertisement

Journal of Nuclear Cardiology

, Volume 25, Issue 6, pp 2016–2023 | Cite as

Low-dose dual-isotope procedure planed for myocardial perfusion CZT-SPECT and assessed through a head-to-head comparison with a conventional single-isotope protocol

  • Laetitia Imbert
  • Véronique Roch
  • Charles Merlin
  • Wassila Djaballah
  • Florent Cachin
  • Mathieu Perrin
  • Marine Claudin
  • Antoine Verger
  • Henri Boutley
  • Gilles Karcher
  • Pierre-Yves Marie
Original Article

Abstract

Purpose of the report

This study aimed at assessing an original low-dose dual-isotope procedure in which the abnormal stress Tc-99m Sestamibi SPECT is followed by rest Tl-201 SPECT, along with a head-to-head comparison with a single-isotope procedure.

Methods and results

One hundred two patients, referred for a low-dose stress-SPECT with Sestamibi (123 ± 20 MBq) on a CZT camera and for whom a rest Sestamibi SPECT was warranted, had an additional Tl-201 rest-SPECT (52 ± 5 MBq) between stress and rest Sestamibi SPECT recordings. Tl-201 images were processed for spill-over and scatter corrections, and uptake differences with stress Sestamibi SPECT were analyzed: (1) for rest acquisitions from Tl-201 (dual-isotope procedure) and from Sestamibi (single-isotope procedure) and (2) in segments for which a diagnosis of ischemia, infarct, or normal perfusion was achieved. Mean effective dose was 8.3 mSv for dual-isotope but would decrease to 5.7 mSv for an expected rate of 37% of patients for whom rest-SPECT is not warranted. After a further background correction of Tl-201 images, the rest–stress difference in myocardial uptake was equivalent between dual- and single-procedures for identifying ischemic segments (respective areas-under-curves: 0.83 ± 0.03 and 0.81 ± 0.03).

Conclusion

This original dual-isotope procedure provides acceptable radiation doses and consistent results, as compared with conventional single-isotope.

Keywords

Myocardial perfusion imaging CZT camera dual-isotope protocol Sestamibi thallium-201 

Abbreviations

ANSM

Agence nationale de sécurité du médicament et des produits de santé

BG

Background

CPP

Comité de protection des personnes

CZT

Cadmium-zinc-telluride

ICRP

International commission on radiological protection

MPI

Myocardial perfusion imaging

QPS

Quantitative perfusion software

ROC

Receiver operating characteristics

ROI

Region of interest

SPECT

Single photon emission computed tomography

Notes

Acknowledgements

The authors thank Pierre Pothier, for critical review of the manuscript, and the Nancyclotep experimental imaging platform, for organizational support.

Disclosure

The authors declare that they have no conflict of interest.

Supplementary material

12350_2017_914_MOESM1_ESM.pptx (586 kb)
Supplementary material 1 (PPTX 586 kb)

References

  1. 1.
    Hesse B, Tägil K, Cuocolo A, Anagnostopoulos C, Bardies M, Bax J, et al. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 2005;32:855-97.CrossRefGoogle Scholar
  2. 2.
    Holly TA, Abbott BG, Al-Mallah M, Calnon DA, Cohen MC, DiFilippo FP, et al. Single photon-emission computed tomography. J Nucl Cardiol 2010;17:941-73.CrossRefGoogle Scholar
  3. 3.
    Henzlova MJ, Duvall WL. Return of dual-isotope SPECT myocardial perfusion imaging? Not so fast. J Nucl Cardiol 2015;22:523-5.CrossRefGoogle Scholar
  4. 4.
    Berman DS, Kiat H, Friedman JD, Wang FP, van Train K, Matzer L, et al. Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: A clinical validation study. J Am Coll Cardiol 1993;22:1455-64.CrossRefGoogle Scholar
  5. 5.
    Imbert L, Poussier S, Franken PR, Songy B, Verger A, Morel O, et al. Compared performances to high-sensitivity cameras dedicated myocardial perfusion tomoscintigraphy: A comprehensive analysis of phantom and human images. J Nucl Med 2012;53:1897-903.CrossRefGoogle Scholar
  6. 6.
    Verger A, Imbert L, Yagdigul Y, Fay R, Djaballah W, Rouzet F, et al. Factors affecting the myocardial activity acquired during exercise SPECT with a high-sensitivity cardiac CZT camera as compared with conventional Anger camera. Eur J Nucl Med Mol Imaging 2014;41:522-8.CrossRefGoogle Scholar
  7. 7.
    Perrin M, Djaballah W, Moulin F, Claudin M, Veran N, Imbert L, et al. Stress-first protocol for myocardial perfusion SPECT imaging with semiconductor cameras: High diagnostic performances with significant reduction in patient radiation doses. Eur J Nucl Med Mol Imaging 2015;42:1004-11.CrossRefGoogle Scholar
  8. 8.
    Picano E, Vañó E, Rehani MM, Cuocolo A, Mont L, Bodi V, et al. The appropriate and justified use of medical radiation in cardiovascular imaging: A position document of the ESC associations of cardiovascular imaging, percutaneous cardiovascular interventions and electrophysiology. Eur Heart J 2014;35:665-72.CrossRefGoogle Scholar
  9. 9.
    Verger A, Djaballah W, Fourquet Rouzet F, Koehl G, Imbert L, et al. Comparison between stress myocardial perfusion SPECT recorded cadmium-zinc-telluride and Anger cameras in various study protocols. Eur J Nucl Med Mol Imaging 2013;40:331-40.CrossRefGoogle Scholar
  10. 10.
    Kacperski K, Erlandsson K, Ben-Haim S, Hutton BF. Iterative deconvolution of simultaneous Tc-99m and Tl-201 projection data measured on a CdZnTe-based cardiac SPECT scanner. Phys Med Biol 2011;56:1397-414.CrossRefGoogle Scholar
  11. 11.
    Claudin M, Imbert L, Djaballah W, Veran N, Poussier S, Roch V et al. Routine evaluation of left ventricular function using CZT-SPECT, with low injected activities and limited recording times. J Nucl Cardiol 2016; in press.Google Scholar
  12. 12.
    Djaballah W, Muller MA, Angioï M, Moulin F, Codreanu A, Mandry D, et al. Nitrate-enhanced gated SPECT in patients with primary angioplasty for acute myocardial infarction: Evidence of a reversible and nitrate-sensitive impairment of myocardial perfusion. Eur J Nucl Med Mol Imaging 2007;34:1981-90.CrossRefGoogle Scholar
  13. 13.
    Ben-Haim S, Kacperski K, Hain S, Van Gramberg D, Hutton BF, Erlandsson K, et al. Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera. Eur J Nucl Med Mol Imaging 2010;37:1710-21.CrossRefGoogle Scholar
  14. 14.
    Cousins C, Miller DL, Bernardi G, Rehani MM, Schofield P, Vañó E, et al. ICRP publication 120: Radiological protection in cardiology. Ann ICRP 2013;42:1-125.CrossRefGoogle Scholar
  15. 15.
    ICRP. Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP Publication 53. ICRP Publication 106. Approved by the Commission in October 2007. Ann ICRP 2008;38:1-197.CrossRefGoogle Scholar
  16. 16.
    Erlandsson K, Kacperski K, Van Gramberg D, Hutton BF. Performance evaluation of D-SPECT: A novel SPECT system for nuclear cardiology. Phys Med Biol 2009;54:2635-49.CrossRefGoogle Scholar
  17. 17.
    Gambhir SS, Berman DS, Ziffer J, Nagler M, Sandler M, Patton J, et al. A novel high-sensitivity rapid acquisition single-photon cardiac imaging camera. J Nucl Med 2009;50:635-43.CrossRefGoogle Scholar
  18. 18.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-42.CrossRefGoogle Scholar
  19. 19.
    Germano G, Berman DS. Quantitative single-photon emission computed tomography imaging. Curr Cardiol Rep 2005;7:136-42.CrossRefGoogle Scholar
  20. 20.
    Altehoefer C, Vom Dahl J, Biedermann M, Uebis R, Beilin I, Sheehan F, et al. Significance of defect severity in technetium-99m-MIBI SPECT at rest to assess myocardial viability: Comparison with fluorine-18-FDG PET. J Nucl Med 1994;35:569-74.Google Scholar
  21. 21.
    Emmett L, Iwanochko RM, Freeman MR, Barolet A, Lee DS, Husain M. Reversible regional wall motion abnormalities on exercise technetium-99m-gated cardiac single photon emission computed tomography predict high-grade angiographic stenoses. J Am Coll Cardiol 2002;39:991-8.CrossRefGoogle Scholar
  22. 22.
    Druz RS, Akinboboye OA, Grimson R, Nichols KJ, Reichek N. Postischemic stunning after adenosine vasodilator stress. J Nucl Cardiol 2004;11:534-41.CrossRefGoogle Scholar
  23. 23.
    DePuey EG, Rozanski A. Using gated technetium-99m-sestamibi SPECT to characterize fixed myocardial defects as infarct or artifact. J Nucl Med 1995;36:952-5.Google Scholar
  24. 24.
    Berman DS, Kang X, Tamarappoo B, Wolak A, Hayes SW, Nakazato R, et al. Stress thallium-201/rest technetium-99m sequential dual isotope high-speed myocardial perfusion imaging. JACC Cardiovasc Imaging 2009;2:273-82.CrossRefGoogle Scholar
  25. 25.
    Makita A, Matsumoto N, Suzuki Y, Hori Y, Kuronuma K, Yoda S, et al. Clinical feasibility of simultaneous acquisition rest (99m)Tc/Stress (201)Tl dual-isotope myocardial perfusion single-photon emission computed tomography with semiconductor camera. Circ J 2016;80:689-95.CrossRefGoogle Scholar
  26. 26.
    Bax JJ, van der Wall EE, Harbinson M. Radionuclide techniques for the assessment of myocardial viability and hibernation. Heart 2004;90:v26-33.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2017

Authors and Affiliations

  • Laetitia Imbert
    • 1
    • 2
    • 3
    • 4
  • Véronique Roch
    • 1
    • 2
  • Charles Merlin
    • 5
    • 6
  • Wassila Djaballah
    • 1
    • 2
  • Florent Cachin
    • 5
    • 6
  • Mathieu Perrin
    • 1
    • 2
  • Marine Claudin
    • 1
    • 2
  • Antoine Verger
    • 1
    • 2
    • 3
  • Henri Boutley
    • 2
    • 7
  • Gilles Karcher
    • 1
    • 2
    • 7
  • Pierre-Yves Marie
    • 1
    • 2
    • 8
  1. 1.CHRU-Nancy, Université de Lorraine, Department of Nuclear MedicineNancyFrance
  2. 2.Nancyclotep Experimental Imaging PlatformNancyFrance
  3. 3.INSERM, Université de Lorraine, UMR 947, IADINancyFrance
  4. 4.Department of RadiotherapyLorraine Cancerology InstituteVandoeuvreFrance
  5. 5.Department of Nuclear Medicine, Jean Perrin CentreUniversité d’AuvergneClermont-FerrandFrance
  6. 6.INSERM, Université d’Auvergne, UMR 990, IMTVClermont-FerrandFrance
  7. 7.University of LorraineFaculty of MedicineNancyFrance
  8. 8.INSERM, Université de Lorraine, UMR 1116, DCACNancyFrance

Personalised recommendations