Advertisement

Journal of Nuclear Cardiology

, Volume 25, Issue 6, pp 2072–2079 | Cite as

Apical sparing pattern of left ventricular myocardial 99mTc-HMDP uptake in patients with transthyretin cardiac amyloidosis

  • Axel Van Der Gucht
  • Anne-Ségolène Cottereau
  • Mukedaisi Abulizi
  • Aziz Guellich
  • Paul Blanc-Durand
  • Jean-Marc Israel
  • Arnault Galat
  • Violaine Plante-Bordeneuve
  • Jean-Luc Dubois-Randé
  • Diane Bodez
  • Jean Rosso
  • Thibaud Damy
  • Emmanuel Itti
Original Article

Abstract

Background

A decreased longitudinal strain in basal segments with a base-to-apex gradient has been described in patients with cardiac amyloidosis (CA).

Objectives

Aim was to investigate the left ventricular (LV) regional distribution of early-phase 99mTc-Hydroxymethylene diphosphonate (99mTc-HMDP) uptake in patients with transthyretin-related cardiac amyloidosis (TTR-CA).

Methods

All patients underwent a whole-body planar 99mTc-HMDP scintigraphy acquired at 10-min post-injection (early-phase) followed by a thorax SPECT/CT. The segmental uptake (expressed as % of maximal myocardial HMDP uptake) was investigated on the AHA 17-segment model and 3-segment model (basal, mid-cavity, apical).

Results

Sixty-one TTR-CA patients were included of whom 29 were wild-type (wt-TTR-CA) and 32 had hereditary TTR-CA (m-TTR-CA). Early myocardial 99mTc-HMDP uptake occurred in all TTR-CA. In all patients, segmental analysis of the LV myocardial distribution of 99mTc-HMDP uptake showed an increased median uptake (interquartile range) in basal/mid-cavity segments compared to the lowest median uptake of apical segments (respectively, 79% [72%-86%] vs. 72% [64%-81%]; P < 10−6). This pattern was similar in wt-TTR-CA group (78% [70%-84%] vs. 70% [61%-81%]; P < 10−6), in m-TTR-CA group (80% [74%-86%] vs. 73 [66%-82%]; P < 10−7) and remained constant independently of the TTR mutation subtype with P ranging 10−5 to 0.03.

Conclusions

Early-phase myocardial scintigraphy identified regional distribution of 99mTc-HMDP uptake characterized by a base-to-apex gradient, corroborating echocardiographic, and cardiac magnetic resonance findings. This apical sparing pattern was similar across TTR-CA and TTR mutation subtypes.

Keywords

SPECT/CT HMDP cardiac amyloidosis transthyretin protein deposition apical sparing 

Abbreviations

AHA

American Heart Association

AL

Amyloid light-chain

CA

Cardiac amyloidosis

DPD

3,3-diphosphono-1,2-propanodicarboxylic

HMDP

Hydroxymethylene diphosphonate

LGE

Late gadolinium enhancement

LV

Left ventricular

MRI

Magnetic resonance imaging

PYP

Pyrophosphate

TTR

Transthyretin

Notes

Acknowledgments

We thank all the physicians involved in the Amyloidosis Network of the Henri Mondor Hospital who participated in the assessment and care of the patients included in this study.

Disclosure

The authors have indicated that they have no financial conflict of interest.

Ethical Approval

The procedure followed was in accordance with the ethical standards guidelines of the responsible committee on human experimentation.

Supplementary material

12350_2017_894_MOESM1_ESM.pptx (1.7 mb)
Supplementary material 1 (PPTX 1782 kb)

References

  1. 1.
    Galat A, Guellich A, Bodez D, Slama M, Dijos M, Zeitoun DM, et al. Aortic stenosis and transthyretin cardiac amyloidosis: The chicken or the egg? Eur Heart J 2016;37:3525-31.CrossRefGoogle Scholar
  2. 2.
    Damy T, Costes B, Hagège AA, Donal E, Eicher J-C, Slama M, et al. Prevalence and clinical phenotype of hereditary transthyretin amyloid cardiomyopathy in patients with increased left ventricular wall thickness. Eur Heart J 2016;37:1826-34.CrossRefGoogle Scholar
  3. 3.
    Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med 2003;349:583-96.CrossRefGoogle Scholar
  4. 4.
    Roig E, Almenar L, González-Vílchez F, Rábago G, Delgado J, Gómez-Bueno M, et al. Outcomes of heart transplantation for cardiac amyloidosis: Subanalysis of the spanish registry for heart transplantation. Am J Transpl 2009;9:1414-9.CrossRefGoogle Scholar
  5. 5.
    Koyama J, Falk RH. Prognostic significance of strain Doppler imaging in light-chain amyloidosis. JACC Cardiovasc Imaging 2010;3:333-42.CrossRefGoogle Scholar
  6. 6.
    Phelan D, Collier P, Thavendiranathan P, Popović ZB, Hanna M, Plana JC, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 2012;98:1442-8.CrossRefGoogle Scholar
  7. 7.
    Fontana M, Banypersad SM, Treibel TA, Maestrini V, Sado DM, White SK, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging 2014;7:157-65.CrossRefGoogle Scholar
  8. 8.
    Syed IS, Glockner JF, Feng D, Araoz PA, Martinez MW, Edwards WD, et al. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging 2010;3:155-64.CrossRefGoogle Scholar
  9. 9.
    Deux J-F, Damy T, Rahmouni A, Mayer J, Planté-Bordeneuve V. Noninvasive detection of cardiac involvement in patients with hereditary transthyretin associated amyloidosis using cardiac magnetic resonance imaging: A prospective study. Amyloid 2014;21:246-55.CrossRefGoogle Scholar
  10. 10.
    Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis. Circulation 2016;133:2404-12.CrossRefGoogle Scholar
  11. 11.
    Galat A, Van der Gucht A, Guellich A, Bodez D, Cottereau A-S, Guendouz S, et al. Early Phase (99)Tc-HMDP Scintigraphy for the Diagnosis and Typing of Cardiac Amyloidosis. JACC Cardiovasc Imaging 2016. doi: 10.1016/j.jcmg.2016.05.007.Google Scholar
  12. 12.
    Abulizi M, Cottereau A-S, Guellich A, Vandeventer S, Galat A, Van Der Gucht A, et al. Early-phase myocardial uptake intensity of (99m)Tc-HMDP vs (99m)Tc-DPD in patients with hereditary transthyretin-related cardiac amyloidosis. J Nucl Cardiol 2016. doi: 10.1007/s12350-016-0707-9.Google Scholar
  13. 13.
    Bodez D, Ternacle J, Guellich A, Galat A, Lim P, Radu C, et al. Prognostic value of right ventricular systolic function in cardiac amyloidosis. Amyloid 2016;23:158-67.CrossRefGoogle Scholar
  14. 14.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-42.CrossRefGoogle Scholar
  15. 15.
    Germano G, Kavanagh PB, Waechter P, Areeda J, Van Kriekinge S, Sharir T, et al. A new algorithm for the quantitation of myocardial perfusion SPECT. I: Technical principles and reproducibility. J Nucl Med 2000;41:712-9.Google Scholar
  16. 16.
    Sharir T, Germano G, Waechter PB, Kavanagh PB, Areeda JS, Gerlach J, et al. A new algorithm for the quantitation of myocardial perfusion SPECT. II: Validation and diagnostic yield. J Nucl Med 2000;41:720-7.Google Scholar
  17. 17.
    Ficaro EP, Fessler JA, Ackermann RJ, Rogers WL, Corbett JR, Schwaiger M. Simultaneous transmission-emission thallium-201 cardiac SPECT: Effect of attenuation correction on myocardial tracer distribution. J Nucl Med 1995;36:921-31.Google Scholar
  18. 18.
    Ternacle J, Bodez D, Guellich A, Audureau E, Rappeneau S, Lim P, et al. Causes and Consequences of Longitudinal LV Dysfunction Assessed by 2D Strain Echocardiography in Cardiac Amyloidosis. JACC Cardiovasc Imaging 2016;9:126-38.CrossRefGoogle Scholar
  19. 19.
    Sperry B, Vranian M, Tower-Rader A, Hachamovitch R, Hanna M, Jaber W. Apical Sparing Left and Right Ventricular Uptake of Technetium Pyrophosphate in Transthyretin Cardiac Amyloidosis. J Nucl Med 2016;57:172.Google Scholar
  20. 20.
    Rapezzi C, Quarta CC, Guidalotti PL, Pettinato C, Fanti S, Leone O, et al. Role of (99m)Tc-DPD scintigraphy in diagnosis and prognosis of hereditary transthyretin-related cardiac amyloidosis. JACC Cardiovasc Imaging 2011;4:659-70.CrossRefGoogle Scholar
  21. 21.
    Worsley DF, Lentle BC. Uptake of technetium-99m MDP in primary amyloidosis with a review of the mechanisms of soft tissue localization of bone seeking radiopharmaceuticals. J Nucl Med 1993;34:1612-5.Google Scholar
  22. 22.
    Kulhanek J, Movahed A. Uptake of technetium 99m HDP in cardiac amyloidosis. Int J Cardiovasc Imaging 2003;19:225-7.CrossRefGoogle Scholar
  23. 23.
    Glaudemans AWJM, van Rheenen RWJ, van den Berg MP, Noordzij W, Koole M, Blokzijl H, et al. Bone scintigraphy with (99m)technetium-hydroxymethylene diphosphonate allows early diagnosis of cardiac involvement in patients with transthyretin-derived systemic amyloidosis. Amyloid 2014;21:35-44.CrossRefGoogle Scholar
  24. 24.
    Galat A, Rosso J, Guellich A, Van Der Gucht A, Rappeneau S, Bodez D, et al. Usefulness of (99m)Tc-HMDP scintigraphy for the etiologic diagnosis and prognosis of cardiac amyloidosis. Amyloid 2015;22:210-20.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2017

Authors and Affiliations

  • Axel Van Der Gucht
    • 1
    • 2
  • Anne-Ségolène Cottereau
    • 1
    • 2
  • Mukedaisi Abulizi
    • 1
    • 2
  • Aziz Guellich
    • 1
    • 3
    • 4
    • 5
  • Paul Blanc-Durand
    • 1
    • 2
  • Jean-Marc Israel
    • 1
    • 2
  • Arnault Galat
    • 1
    • 3
    • 4
    • 5
  • Violaine Plante-Bordeneuve
    • 1
    • 3
    • 5
    • 6
  • Jean-Luc Dubois-Randé
    • 1
    • 3
    • 4
    • 5
  • Diane Bodez
    • 1
    • 3
    • 4
    • 5
  • Jean Rosso
    • 1
    • 2
    • 3
  • Thibaud Damy
    • 1
    • 3
    • 4
    • 5
  • Emmanuel Itti
    • 1
    • 2
    • 3
    • 5
  1. 1.Mondor Amyloidosis NetworkCréteilFrance
  2. 2.Department of Nuclear MedicineAP-HP, Henri Mondor Teaching HospitalCréteilFrance
  3. 3.DHU ATVBParis Est UniversityCréteilFrance
  4. 4.Department of CardiologyAP-HP, Henri Mondor Teaching HospitalCréteilFrance
  5. 5.INSERM U955GRC Amyloid Research InstituteCréteilFrance
  6. 6.Department of NeurologyAP-HP, Henri Mondor Teaching HospitalCréteilFrance

Personalised recommendations