Journal of Nuclear Cardiology

, Volume 25, Issue 2, pp 572–580 | Cite as

Assessment of the area at risk after acute myocardial infarction using 123I-MIBG SPECT: Comparison with the angiographic APPROACH-score

  • Fabien Vauchot
  • Fayçal Ben Bouallègue
  • Christophe Hedon
  • Christophe Piot
  • François Roubille
  • Denis Mariano-Goulart
Original Article

Abstract

Background

Assessment of the area at risk (AAR) associated with an acute myocardial infarction is crucial for evaluating prevention and revascularization strategies. The aim of this study was to evaluate whether 123I-metaiodobenzylguanidine (123I-MIBG) single-photon emission computed tomography (SPECT) provides a more widely available assessment of anatomical AAR than the established anatomical angiographic methods.

Methods

Seventy patients with ST-segment elevation acute myocardial infarction (STEMI) underwent coronary angiography with percutaneous coronary intervention and subsequent 123I-MIBG myocardial scintigraphy with left myocardial relative radiotracer uptake evaluation 12 ± 10 days after STEMI. Patients were divided into two groups depending on whether the culprit artery was occluded (50 patients) or sub-occluded (20 patients). Two scores were calculated as a percentage of the left ventricular myocardium surface, the first using a standard 17-segment summed rest score derived from the relative quantitative evaluation of 123I-MIBG myocardial uptake (MAR) and the second using the modified APPROACH-score (ApAR).

Results

For the patients with occluded artery, this study showed a high correlation between MAR and the angiographic score (Pearson r = .762 and P < .0001). For the patients with sub-occluded artery, for which the ApAR is not reliable, this study showed no correlation between MAR and the angiographic score (Pearson r = .18 and P = 0.45).

Conclusions

123I-MIBG myocardial scintigraphy provides ARR assessment similar to that of ApAR in patients with a single occluded coronary artery. However, MAR differs from ApAR when angiographic scores are known to be inaccurate (sub-occluded culprit artery) or impossible to use. Further studies are needed to evaluate the potential clinical interest of 123I-MIBG SPECT as an alternative for area at risk assessment after STEMI even when the culprit artery is sub-occluded or when the angiographic scores cannot be used.

Keywords

Myocardial infarction area at risk 123I-MIBG SPECT coronary angiography 

Abbreviations

AAR

Area at risk

ApAR

Modified APPROACH-score evaluation of the area at risk

MAR

123I-MIBG evaluation of the area at risk

LV

Left ventricle

PCI

Percutaneous coronary intervention

STEMI

ST-segment elevation acute myocardial infarction

123I-MIBG

123I-metaiodobenzylguanidine

SPECT

Single-photon emission computed tomography

CZT

Cadmium-zinc-telluride

MSA

Mean segmental activity

MRI

Magnetic resonance imaging

Notes

Disclosures

There is no conflict of interest to declare.

Supplementary material

12350_2016_644_MOESM1_ESM.pptx (316 kb)
Supplementary material 1 (PPTX 316 kb)

References

  1. 1.
    Reimer KA, Jennings RB. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 1979;40:633-44.PubMedGoogle Scholar
  2. 2.
    Lowe JE, Reimer KA, Jennings RB. Experimental infarct size as a function of the amount of myocardium at risk. Am J Pathol 1978;90:363-79.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Lee JT, Ideker RE, Reimer KA. Myocardial infarct size and location in relation to the coronary vascular bed at risk in man. Circulation 1981;64:526-34.CrossRefPubMedGoogle Scholar
  4. 4.
    Reimer KA, Ideker RE, Jennings RB. Effect of coronary occlusion site on ischemic bed size and collateral blood flow in dogs. Cardiovasc Res 1981;15:668-74.CrossRefPubMedGoogle Scholar
  5. 5.
    Mewton N, Rapacchi S, Augeul L, Ferrera R, Loufouat J, Boussel L, et al. Determination of the myocardial area at risk with pre- versus post-reperfusion imaging techniques in the pig model. Basic Res Cardiol. 2011;106:1247-57.CrossRefPubMedGoogle Scholar
  6. 6.
    Feiring AJ, Johnson MR, Kioschos JM, Kirchner PT, Marcus ML, White CW. The importance of the determination of the myocardial area at risk in the evaluation of the outcome of acute myocardial infarction in patients. Circulation 1987;75:980-7.CrossRefPubMedGoogle Scholar
  7. 7.
    Phrommintikul A, Abdel-Aty H, Schulz-Menger J, Friedrich MG, Taylor AJ. Acute oedema in the evaluation of microvascular reperfusion and myocardial salvage in reperfused myocardial infarction with cardiac magnetic resonance imaging. Eur J Radiol 2010;74:e12-7.CrossRefPubMedGoogle Scholar
  8. 8.
    Matthias GF, Abdel-Aty H, Taylor A, Schulz-Menger J, Messroghli D, Dietz R. The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance. J Am Coll Cardiol 2008;51:1581-7.CrossRefGoogle Scholar
  9. 9.
    Berry C, Kellman P, Mancini C, et al. Magnetic resonance imaging delineates the ischemic area at risk and myocardial salvage in patients with acute myocardial infarction. Circ Cardiovasc Imaging 2010;3:527-35.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Carlsson M, Ubachs JF, Hedstrom E, Heiberg E, Jovinge S, Arheden H. Myocardium at risk after acute infarction in humans on cardiac magnetic resonance: quantitative assessment during follow-up and validation with single-photon emission computed tomography. J Am Coll Cardiol Img 2009;2:569-76.CrossRefGoogle Scholar
  11. 11.
    Fuernau G, Eitel I, Franke V, Hildebrandt L, Meissner J, De Waha S, et al. Myocardium at risk in ST-segment elevation myocardial infarction. Comparison of T2-weighted edema imaging with the MR-assessed endocardia surface area and validation against angiographic scoring. J Am Coll Cardiol Img 2011;4:967-76.CrossRefGoogle Scholar
  12. 12.
    Ibanez B, Prat-Gonzalez S, Speidl WS, et al. Early metoprolol administration before coronary reperfusion results in increased myocardial salvage: Analysis of ischemic myocardium at risk using cardiac magnetic resonance. Circulation 2007;115:2909-16.CrossRefPubMedGoogle Scholar
  13. 13.
    Brandt PWT, Partridge JB, Wattie WJ. Coronarography arteriography; method of presentation of the arteriogram report and a scoring system. Clin Radiol 1977;28:361-5.CrossRefPubMedGoogle Scholar
  14. 14.
    Ortiz-Pérez JT, Meyers SN, Lee DC, Kansal P, Klocke FJ, Holly TA, et al. Angiographic estimates of myocardium at risk during acute myocardial infarction: validation study using cardiac magnetic resonance imaging. Eur Heart J 2007;28:1750-8.CrossRefPubMedGoogle Scholar
  15. 15.
    Wright J, Adriaenssens T, Dymarkowski S, Desmet W, Bogaert J. Quantification of myocardial area at risk with T2-weighted CMR: comparison with contrast-enhanced CMR and coronary angiography. J Am Coll Cardiol Img 2009;2:825-31.CrossRefGoogle Scholar
  16. 16.
    Graham MM, Faris PD, Ghali WA, Galbraith PD, Norris CM, Badry JT, et al. Validation of three myocardial jeopardy scores in a population-based cardiac catheterization cohort. Am Heart J 2001;142:254-61.CrossRefPubMedGoogle Scholar
  17. 17.
    Moral S, Rodríguez-Palomares JF, Descalzo M, Martí G, Pineda V, Otaegui I, et al. Quantification of myocardial area at risk: validation of coronary angiographic scores with cardiovascular magnetic resonance methods. Rev Esp Cardiol (Engl Ed) 2012;65:1010-7.CrossRefPubMedGoogle Scholar
  18. 18.
    Roubille F, Micheau A, Combes S, Thibaut S, Souteyrand G, Cayla G, et al. Intracoronary administration of darbepoetin-alpha at onset of reperfusion in acute myocardial infarction: results of the randomized Intra-Co-EpoMI trial. Arch Cardiovasc Dis 2013;106:135-45.CrossRefPubMedGoogle Scholar
  19. 19.
    Shannon R, Chaudhry M. Effect of α1-adrenergic receptors in cardiac pathophysiology. Am Heart J 2006;152:842-50.CrossRefPubMedGoogle Scholar
  20. 20.
    Henneman MM, Bengel FM, Van der Wall EE, Knuuti J, Bax JJ. Cardiac neuronal imaging: Application in the evaluation of cardiac disease. J Nucl Cardiol 2008;15:442-55.CrossRefPubMedGoogle Scholar
  21. 21.
    Merlet P, Valette H, Dubois-Randé JL, Moyse D, Duboc D, Dove P, et al. Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med 1992;33:471-7.PubMedGoogle Scholar
  22. 22.
    Manrique A, Bernard M, Hitzel A, Bauer F, Ménard JF, Sabatier R, et al. Prognostic value of sympathetic innervation and cardiac asynchrony in dilated cardiomyopathy. Eur J Nucl Med Mol Imaging 2008;35:2074-81.CrossRefPubMedGoogle Scholar
  23. 23.
    Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123meta-iodobenzylguanidine imaging and cardiac events in heart failure results of the prospective ADMIRE-HF (AdreViewMyocardial imaging for risk evaluation in heart failure) study. J Am Coll Cardiol 2010;55:2212-21.CrossRefPubMedGoogle Scholar
  24. 24.
    Valli N, Ducassou D, Barat JL. 123I-metaiodobenzylguanidine myocardial scintigraphy in arrhythmic disease. Méd Nucl. 2007;31:631-7.CrossRefGoogle Scholar
  25. 25.
    Boogersn MJ, Borleffs JW, Henneman MM, Van Bommel RJ, Van Ramshorst J, Boersma E, et al. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol 2010;55:2769-77.CrossRefGoogle Scholar
  26. 26.
    Wakabayashi T, Nakata T, Hashimoto A, Yuda S, Tsuchihashi K, Travin MI, et al. Assessment of underlying etiology and cardiac sympathetic innervation to identify patients at high risk of cardiac death. J Nucl Med 2001;42:1757-67.PubMedGoogle Scholar
  27. 27.
    Tamaki S, Yamada T, Okuyama Y, Morita T, Sanada S, Tsukamoto Y, et al. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction. J Am Coll Cardiol 2009;53:426-35.CrossRefPubMedGoogle Scholar
  28. 28.
    Fagret D, Wolf JE, Comet M. Myocardial uptake of meta[123I]-iodobenzylguanidine ([123I]-MIBG) in patients with myocardial infarct. Eur J Nucl Med 1989;15:624-8.CrossRefPubMedGoogle Scholar
  29. 29.
    McGhie AI, Corbett JR, Akers MS, et al. Regional cardiac adrenergic function using I-123 meta-iodobenzylguanidine tomographic imaging after acute myocardial infarction. Am J Cardiol 1991;67:236-42.CrossRefPubMedGoogle Scholar
  30. 30.
    Hartikainen J, Mustonen J, Kuikka J, Vanninen E, Kettunen R. Cardiac sympathetic denervation in patients with coronary artery disease without previous myocardial infarction. Am J Cardiol 1997;80:273-7.CrossRefPubMedGoogle Scholar
  31. 31.
    D’estanque E, Hedon C, Lattuca B, Bourdon A, Benkiran B, Verd A, et al. Optimization of a simultaneous dual isotope 201Tl/123I-MIBG myocardial SPECT imaging protocol with a CZT camera for trigger zone assessment after myocardial infarction for routine clinical settings: are delayed acquisition and scatter correction necessary? J Nucl Cardiol 2016. doi: 10.1007/s12350-016-0524-1.PubMedGoogle Scholar
  32. 32.
    Hesse B, Tägil K, Cuocolo A, et al. Procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 2005;32:855-97.CrossRefPubMedGoogle Scholar
  33. 33.
    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;8:307-10.CrossRefGoogle Scholar
  34. 34.
    Holls S. Analysis of method comparison studies. JIFCC 1997;9:8-12.Google Scholar
  35. 35.
    Roubille F, Lattuca B, Leclercq F. One Shot, Staged Procedures or Immediate Full Revascularization Strategy for Patients with Multivessel Disease Admitted for STEMI: Still a Bone of Contention. J Clin Exp Cardiol 2014;5:e135.CrossRefGoogle Scholar
  36. 36.
    Jang JS, Spertus JA, Arnold SV, Shafiq A, Grodzinsky A, Fendler TJ, et al. Impact of multivessel revascularization on health status outcomes in patients with ST-segment elevation myocardial infarction and multivessel coronary artery disease. J Am Coll Cardiol 2015;66:2104-13.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ruggieri A, Piraino D, Dendramis G, Cortese B, Carella M, Buccheri D, et al. STEMI patients and nonculprit lesions: to treat or not to treat? And when? A review of most recent literature. Catheter Cardiovasc Interv 2016;87(7):1258-68.CrossRefPubMedGoogle Scholar
  38. 38.
    Roubille F, Mewton N, Elbaz M, Roth O, Prunier F, Cung TT, et al. No post-conditioning in the human heart with thrombolysis in myocardial infarction flow 2-3 on admission. Eur Heart J 2014;35:1675-82.CrossRefPubMedGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2016

Authors and Affiliations

  • Fabien Vauchot
    • 1
  • Fayçal Ben Bouallègue
    • 1
  • Christophe Hedon
    • 2
  • Christophe Piot
    • 3
    • 5
  • François Roubille
    • 2
    • 4
  • Denis Mariano-Goulart
    • 1
    • 4
  1. 1.Department of Nuclear MedicineMontpellier University HospitalMontpellier Cedex 5France
  2. 2.Department of CardiologyMontpellier University HospitalMontpellier Cedex 5France
  3. 3.Department of CardiologyClinique du MillénaireMontpellier Cedex 2France
  4. 4.PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214Montpellier Cedex 5France
  5. 5.IGF - UMR5203 - U1191 – UMMontpellierFrance

Personalised recommendations