Skip to main content
Log in

Life-Threatening Ventricular Arrhythmias: Current Role of Imaging in Diagnosis and Risk Assessment

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Sudden cardiac arrest continues to be a major cause of death from cardiovascular disease but our ability to predict patients at the highest risk of developing lethal ventricular arrhythmias remains limited. Left ventricular ejection fraction is inversely related to the risk of sudden death but has a low sensitivity and specificity for the population at risk. Nevertheless, it continues to be the main variable considered in identifying patients most likely to benefit from implantable defibrillators to prevent sudden death. Imaging myocardial sympathetic innervation with PET and SPECT as well as imaging characteristics of myocardial infarcts using gadolinium-enhanced cardiac magnetic resonance are emerging as imaging modalities that may further refine patient selection beyond ejection fraction. This review will primarily focus on employing advanced imaging approaches to identify patients with left ventricular dysfunction that are most likely to develop lethal arrhythmias and benefit from inserting a primary prevention implantable cardiac defibrillator. While not yet tested in prospective studies, we will review risk prediction models incorporating quantitative imaging and biomarkers that have been developed that appear promising to identify those at highest risk of sudden death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

SCA:

Sudden cardiac arrest

ICD:

Implantable cardioverter defibrillator

LVEF:

Left ventricular ejection fraction

VF:

Ventricular fibrillation

VT:

Ventricular tachycardia

123I-mIBG:

123I-meta-iodobenzylguanidine

11C-HED:

11C-meta-hydroxyephedrine

HMR:

Heart-to-mediastinum ratio

ADMIRE-HF:

AdreView Myocardial Imaging for Risk Evaluation in Heart Failure

PAREPET:

Prediction of Arrhythmic Events with Positron Emission Tomography

References

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2015 update: A report from the American Heart Association. Circulation. 2015;131:e29-322.

    Article  PubMed  Google Scholar 

  2. Goldberger JJ, Basu A, Boineau R, Buxton AE, Cain ME, Canty JM Jr, et al. Risk stratification for sudden cardiac death: A plan for the future. Circulation. 2014;129:516-26.

    Article  PubMed  Google Scholar 

  3. Wellens HJ, Schwartz PJ, Lindemans FW, Buxton AE, Goldberger JJ, Hohnloser SH, et al. Risk stratification for sudden cardiac death: Current status and challenges for the future. Eur Heart J. 2014;35:1642-51.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nagueh SF, Zoghbi WA. Role of imaging in the evaluation of patients at risk for sudden cardiac death: Genotype-phenotype intersection. JACC Cardiovasc Imaging. 2015;8:828-45.

    Article  PubMed  Google Scholar 

  5. Daubert JP, Wilber DJ, Lin A, Zareba W, Andrews ML, Huang DT, et al ICD therapy for fast ventricular tachycardia or ventricular fibrillation is a surrogate endpoint for mortality in MADIT II. Circulation 2003;108:IV-385.

  6. Moss AJ, Schuger C, Beck CA, Brown MW, Cannom DS, Daubert JP, et al. Reduction in inappropriate therapy and mortality through ICD programming. N Engl J Med. 2012;367:2275-83.

    Article  CAS  PubMed  Google Scholar 

  7. Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 2014;114:1004-21.

    Article  CAS  PubMed  Google Scholar 

  8. Merlet P, Valette H, Dubois-Rande JL, Moyse D, Duboc D, Dove P, et al. Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med. 1992;33:471-7.

    CAS  PubMed  Google Scholar 

  9. Wakabayashi T, Nakata T, Hashimoto A, Yuda S, Tsuchihashi K, Travin MI, et al. Assessment of underlying etiology and cardiac sympathetic innervation to identify patients at high risk of cardiac death. J Nucl Med. 2001;42:1757-67.

    CAS  PubMed  Google Scholar 

  10. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. J Am Coll Cardiol. 2010;55:2212-21.

    Article  PubMed  Google Scholar 

  11. Shah AM, Bourgoun M, Narula J, Jacobson AF, Solomon SD. Influence of ejection fraction on the prognostic value of sympathetic innervation imaging with iodine-123 MIBG in heart failure. JACC Cardiovasc Imaging. 2012;5:1139-46.

    Article  PubMed  Google Scholar 

  12. Chugh SS. Early identification of risk factors for sudden cardiac death. Nat Rev Cardiol. 2010;7:318-26.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Verschure DO, Veltman CE, Manrique A, Somsen GA, Koutelou M, Katsikis A, et al. For what endpoint does myocardial 123I-MIBG scintigraphy have the greatest prognostic value in patients with chronic heart failure? Results of a pooled individual patient data meta-analysis. Eur Heart J Cardiovasc Imaging. 2014;15:996-1003.

    Article  PubMed  Google Scholar 

  14. Tamaki S, Yamada T, Okuyama Y, Morita T, Sanada S, Tsukamoto Y, et al. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: Results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol. 2009;53:426-35.

    Article  CAS  PubMed  Google Scholar 

  15. Kioka H, Yamada T, Mine T, Morita T, Tsukamoto Y, Tamaki S, et al. Prediction of sudden death in patients with mild-to-moderate chronic heart failure by using cardiac iodine-123 metaiodobenzylguanidine imaging. Heart. 2007;93:1213-8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kasama S, Toyama T, Hatori T, Sumino H, Kumakura H, Takayama Y, et al. Evaluation of cardiac sympathetic nerve activity and left ventricular remodelling in patients with dilated cardiomyopathy on the treatment containing carvedilol. Eur Heart J. 2007;28:989-95.

    Article  CAS  PubMed  Google Scholar 

  17. Toyama T, Hoshizaki H, Yoshimura Y, Kasama S, Isobe N, Adachi H, et al. Combined therapy with carvedilol and amiodarone is more effective in improving cardiac symptoms, function, and sympathetic nerve activity in patients with dilated cardiomyopathy: Comparison with carvedilol therapy alone. J Nucl Cardiol. 2008;15:57-64.

    Article  PubMed  Google Scholar 

  18. de Peuter OR, Verberne HJ, Kok WE, van den Bogaard B, Schaap MC, Nieuwland R, et al. Differential effects of nonselective vs selective beta-blockers on cardiac sympathetic activity and hemostasis in patients with heart failure. J Nucl Med. 2013;54:1733-9.

    Article  PubMed  Google Scholar 

  19. Al Badarin FJ, Wimmer AP, Kennedy KF, Jacobson AF, Bateman TM. The utility of ADMIRE-HF risk score in predicting serious arrhythmic events in heart failure patients: Incremental prognostic benefit of cardiac 123I-mIBG scintigraphy. J Nucl Cardiol 2014;21:756-62; quiz 3-55, 63-5.

  20. Barber MJ, Mueller TM, Henry DP, Felten SY, Zipes DP. Transmural myocardial infarction in the dog produces sympathectomy in noninfarcted myocardium. Circulation. 1983;67:787-96.

    Article  CAS  PubMed  Google Scholar 

  21. Matsunari I, Schricke U, Bengel FM, Haase HU, Barthel P, Schmidt G, et al. Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes. Circulation. 2000;101:2579-85.

    Article  CAS  PubMed  Google Scholar 

  22. Bengel FM, Barthel P, Matsunari I, Schmidt G, Schwaiger M. Kinetics of 123I-MIBG after acute myocardial infarction and reperfusion therapy. J Nucl Med. 1999;40:904-10.

    CAS  PubMed  Google Scholar 

  23. Luisi AJ Jr, Fallavollita JA, Suzuki G, Canty JM Jr. Spatial inhomogeneity of sympathetic nerve function in hibernating myocardium. Circulation. 2002;106:779-81.

    Article  PubMed  Google Scholar 

  24. Luisi AJ Jr, Suzuki G, deKemp R, Haka MS, Toorongian SA, Canty JM Jr, et al. Regional 11C-hydroxyephedrine retention in hibernating myocardium: Chronic inhomogeneity of sympathetic innervation in the absence of infarction. J Nucl Med. 2005;46:1368-74.

    CAS  PubMed  Google Scholar 

  25. Fernandez SF, Ovchinnikov V, Canty JM Jr, Fallavollita JA. Hibernating myocardium results in partial sympathetic denervation and nerve sprouting. Am J Physiol Heart Circ Physiol. 2013;304:H318-27.

    Article  CAS  PubMed  Google Scholar 

  26. Chen PS, Chen LS, Cao JM, Sharifi B, Karagueuzian HS, Fishbein MC. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res. 2001;50:409-16.

    Article  CAS  PubMed  Google Scholar 

  27. Iyer V, Canty JM Jr. Regional desensitization of β-adrenergic receptor signaling in swine with chronic hibernating myocardium. Circ Res. 2005;97:789-95.

    Article  CAS  PubMed  Google Scholar 

  28. Pizzuto MF, Suzuki G, Banas MD, Heavey B, Fallavollita JA, Canty JM Jr. Dissociation of hemodynamic and electrocardiographic indexes of myocardial ischemia in pigs with hibernating myocardium and sudden cardiac death. Am J Physiol Heart Circ Physiol. 2013;304:H1697-707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Canty JM Jr, Suzuki G, Banas MD, Verheyen F, Borgers M, Fallavollita JA. Hibernating myocardium: Chronically adapted to ischemia but vulnerable to sudden death. Circ Res. 2004;94:1142-9.

    Article  CAS  PubMed  Google Scholar 

  30. Bax JJ, Kraft O, Buxton AE, Fjeld JG, Parizek P, Agostini D, et al. 123 I-mIBG scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing: A prospective multicenter pilot study. Circ Cardiovasc Imaging. 2008;1:131-40.

    Article  PubMed  Google Scholar 

  31. Zhou Y, Zhou W, Folks RD, Manatunga DN, Jacobson AF, Bax JJ, et al. I-123 mIBG and Tc-99m myocardial SPECT imaging to predict inducibility of ventricular arrhythmia on electrophysiology testing: A retrospective analysis. J Nucl Cardiol. 2014;21:913-20.

    Article  PubMed  Google Scholar 

  32. Boogers MJ, Borleffs CJ, Henneman MM, van Bommel RJ, van Ramshorst J, Boersma E, et al. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol. 2010;55:2769-77.

    Article  PubMed  Google Scholar 

  33. Fallavollita JA, Luisi AJ Jr, Michalek SM, Valverde AM, deKemp RA, Haka MS, et al. Prediction of ARrhythmic Events with Positron Emission Tomography: PAREPET study design and methods. Contemp Clin Trials. 2006;27:374-88.

    Article  PubMed  Google Scholar 

  34. Fallavollita JA, Heavey BM, Luisi AJ Jr, Michalek SM, Baldwa S, Mashtare TL Jr, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63:141-9.

    Article  PubMed  Google Scholar 

  35. Malhotra S, Fallavollita JA, Canty JM Jr. Comparable value of threshold and nonthreshold based techniques of cardiac sympathetic denervation assessment for predicting sudden cardiac arrest. J Nucl Cardiol. 2015;22:775.

    Article  Google Scholar 

  36. Stevenson WG, Brugada P, Waldecker B, Zehender M, Wellens HJ. Clinical, angiographic, and electrophysiologic findings in patients with aborted sudden death as compared with patients with sustained ventricular tachycardia after myocardial infarction. Circulation. 1985;71:1146-52.

    Article  CAS  PubMed  Google Scholar 

  37. Assomull RG, Prasad SK, Lyne J, Smith G, Burman ED, Khan M, et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol. 2006;48:1977-85.

    Article  PubMed  Google Scholar 

  38. Bello D, Fieno DS, Kim RJ, Pereles FS, Passman R, Song G, et al. Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J Am Coll Cardiol. 2005;45:1104-8.

    Article  PubMed  Google Scholar 

  39. Gao P, Yee R, Gula L, Krahn AD, Skanes A, Leong-Sit P, et al. Prediction of arrhythmic events in ischemic and dilated cardiomyopathy patients referred for implantable cardiac defibrillator: Evaluation of multiple scar quantification measures for late gadolinium enhancement magnetic resonance imaging. Circ Cardiovasc Imaging. 2012;5:448-56.

    Article  PubMed  Google Scholar 

  40. Nazarian S, Bluemke DA, Lardo AC, Zviman MM, Watkins SP, Dickfeld TL, et al. Magnetic resonance assessment of the substrate for inducible ventricular tachycardia in nonischemic cardiomyopathy. Circulation. 2005;112:2821-5.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wu KC, Gerstenblith G, Guallar E, Marine JE, Dalal D, Cheng A, et al. Combined cardiac magnetic resonance imaging and C-reactive protein levels identify a cohort at low risk for defibrillator firings and death. Circ Cardiovasc Imaging. 2012;5:178-86.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Stevenson WG, Friedman PL, Sager PT, Saxon LA, Kocovic D, Harada T, et al. Exploring postinfarction reentrant ventricular tachycardia with entrainment mapping. J Am Coll Cardiol. 1997;29:1180-9.

    Article  CAS  PubMed  Google Scholar 

  43. Flett AS, Hasleton J, Cook C, Hausenloy D, Quarta G, Ariti C, et al. Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC Cardiovasc Imaging. 2011;4:150-6.

    Article  PubMed  Google Scholar 

  44. Yan AT, Shayne AJ, Brown KA, Gupta SN, Chan CW, Luu TM, et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation. 2006;114:32-9.

    Article  PubMed  Google Scholar 

  45. Zeidan-Shwiri T, Yang Y, Lashevsky I, Kadmon E, Kagal D, Dick A, et al. Magnetic resonance estimates of the extent and heterogeneity of scar tissue in ICD patients with ischemic cardiomyopathy predict ventricular arrhythmia. Heart Rhythm. 2015;12:802-8.

    Article  PubMed  Google Scholar 

  46. Schmidt A, Azevedo CF, Cheng A, Gupta SN, Bluemke DA, Foo TK, et al. Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation. 2007;115:2006-14.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Roes SD, Borleffs CJ, van der Geest RJ, Westenberg JJ, Marsan NA, Kaandorp TA, et al. Infarct tissue heterogeneity assessed with contrast-enhanced MRI predicts spontaneous ventricular arrhythmia in patients with ischemic cardiomyopathy and implantable cardioverter-defibrillator. Circ Cardiovasc Imaging. 2009;2:183-90.

    Article  PubMed  Google Scholar 

  48. de Haan S, Meijers TA, Knaapen P, Beek AM, van Rossum AC, Allaart CP. Scar size and characteristics assessed by CMR predict ventricular arrhythmias in ischaemic cardiomyopathy: Comparison of previously validated models. Heart. 2011;97:1951-6.

    Article  PubMed  Google Scholar 

  49. Mesubi O, Ego-Osuala K, Jeudy J, Purtilo J, Synowski S, Abutaleb A, et al. Differences in quantitative assessment of myocardial scar and gray zone by LGE-CMR imaging using established gray zone protocols. Int J Cardiovasc Imaging. 2015;31:359-68.

    Article  PubMed  Google Scholar 

  50. Morishima I, Sone T, Tsuboi H, Mukawa H, Uesugi M, Morikawa S, et al. Risk stratification of patients with prior myocardial infarction and advanced left ventricular dysfunction by gated myocardial perfusion SPECT imaging. J Nucl Cardiol. 2008;15:631-7.

    Article  PubMed  Google Scholar 

  51. van der Burg AE, Bax JJ, Boersma E, Pauwels EK, van der Wall EE, Schalij MJ. Impact of viability, ischemia, scar tissue, and revascularization on outcome after aborted sudden death. Circulation. 2003;108:1954-9.

    Article  PubMed  Google Scholar 

  52. Sood N, Al Badarin F, Parker M, Pullatt R, Jacobson AF, Bateman TM, et al. Resting perfusion MPI-SPECT combined with cardiac 123I-mIBG sympathetic innervation imaging improves prediction of arrhythmic events in non-ischemic cardiomyopathy patients: Sub-study from the ADMIRE-HF trial. J Nucl Cardiol. 2013;20:813-20.

    Article  PubMed  Google Scholar 

  53. Hou PN, Tsai SC, Lin WY, Cheng CM, Chiang KF, Chang YC, et al. Relationship of quantitative parameters of myocardial perfusion SPECT and ventricular arrhythmia in patients receiving cardiac resynchronization therapy. Ann Nucl Med. 2015;29:772-8.

    Article  PubMed  Google Scholar 

  54. Kawai T, Yamada T, Tamaki S, Morita T, Furukawa Y, Iwasaki Y, et al. Usefulness of cardiac meta-iodobenzylguanidine imaging to identify patients with chronic heart failure and left ventricular ejection fraction <35% at low risk for sudden cardiac death. Am J Cardiol. 2015;115:1549-54.

    Article  CAS  PubMed  Google Scholar 

  55. Malhotra S, Fernandez SF, Fallavollita JA, Canty JM Jr. Prognostic significance of imaging myocardial sympathetic innervation. Curr Cardiol Rep. 2015;17:62.

    Article  PubMed  Google Scholar 

Download references

Disclosures

No disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Canty Jr. MD.

Additional information

Supported by the National Heart Lung and Blood Institute (HL-055324, HL-061610), the Department of Veterans Affairs, the Albert and Elizabeth Rekate Fund in Cardiovascular Medicine and the National Center for Advancing Translational Sciences (UL1TR001412)

Elecronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 763 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malhotra, S., Canty, J.M. Life-Threatening Ventricular Arrhythmias: Current Role of Imaging in Diagnosis and Risk Assessment. J. Nucl. Cardiol. 23, 1322–1334 (2016). https://doi.org/10.1007/s12350-015-0392-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-015-0392-0

Keywords

Navigation