Journal of Nuclear Cardiology

, Volume 23, Issue 4, pp 670–679 | Cite as

Evaluation of ECG-gated [11C]acetate PET for measuring left ventricular volumes, mass, and myocardial external efficiency

  • Nils Henrik HanssonEmail author
  • Lars Tolbod
  • Johannes Harms
  • Henrik Wiggers
  • Won Yong Kim
  • Esben Hansen
  • Tomas Zaremba
  • Jørgen Frøkiær
  • Steen Jakobsen
  • Jens Sørensen
Original Article



Noninvasive estimation of myocardial external efficiency (MEE) requires measurements of left ventricular (LV) oxygen consumption with [11C]acetate PET in addition to LV stroke volume and mass with cardiovascular magnetic resonance (CMR). Measuring LV geometry directly from ECG-gated [11C]acetate PET might enable MEE evaluation from a single PET scan. Therefore, we sought to establish the accuracy of measuring LV volumes, mass, and MEE directly from ECG-gated [11C]acetate PET.


Thirty-five subjects with aortic valve stenosis underwent ECG-gated [11C]acetate PET and CMR. List mode PET data were rebinned into 16-bin ECG-gated uptake images before measuring LV volumes and mass using commercial software and compared to CMR. Dynamic datasets were used for calculation of mean LV oxygen consumption and MEE.


LV mass, volumes, and ejection fraction measured by CMR and PET correlated strongly (r = 0.86-0.92, P < .001 for all), but were underestimated by PET (P < .001 for all except ESV P = .79). PET-based MEE, corrected for bias, correlated fairly with PET/CMR-based MEE (r = 0.60, P < .001, bias −3 ± 21%, P = .56). PET-based MEE bias was strongly associated with LV wall thickness.


Although analysis-related improvements in accuracy are recommended, LV geometry estimated from ECG-gated [11C]acetate PET correlate excellently with CMR and can indeed be used to evaluate MEE.


Myocardial external efficiency PET imaging magnetic resonance imaging metabolism: PET 



Myocardial external efficiency


Cardiovascular magnetic resonance


Myocardial oxygen consumption


Left ventricle total oxygen consumption


Emory cardiac toolbox


Mean transaortic valve gradient


MEE calculated using both PET and CMR data


MEE calculated using PET data only


MEE calculated from PET data only using SV and mass corrected according to the derived linear regression equation for PET and CMR values


Work metabolic index



Authors thank cardiologist Inger Sihm at Aarhus Hjerteklinik and The Department of Cardiology at the Regional Hospital in Horsens, Denmark for assisting in subject recruitment. We also thank Anders Jorsal, Bent Roni Ranghøj Nielsen and Peter Iversen for their assistance during protocol preparation.


This study received financial assistance from the Lundbeck Foundation, Arvid Nilssons Foundation, Karen Elise Jensens Foundation and Snedkermester Sophus Jacobsen & Hustru Astrid Jacobsens Foundation. Henrik Wiggers is principal investigator in studies involving the following pharmaceutical companies; NovoNordisk, MSD, Bayer, Daiichi-Sankyo, Novartis, Sanofi-Aventis, Pfizer. For Nils Henrik Stubkjaer Hansson, Johannes Hendrik Harms, Lars Poulsen Tolbod, Won Yong Kim, Esben Sovso Szocska Hansen, Tomas Zaremba, Steen Jakobsen, Jorgen Frokiaer and Jens Sorensen, there are no disclosures.


  1. 1.
    Evans CL, Matsuoka Y. The effect of various mechanical conditions on the gaseous metabolism and efficiency of the mammalian heart. J Physiol 1915;49:378-405.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bing R, Hammond M, Handelsman J, Powers S, Spencer F, Eckenhoff J, et al. The measurement of coronary blood flow, oxygen consumption, and efficiency of the left ventricle in man. Am Heart J 1949;38:1.CrossRefPubMedGoogle Scholar
  3. 3.
    Braunwald E. Control of myocardial oxygen consumption: Physiologic and clinical considerations. Am J Cardiol 1971;27:416-32.CrossRefPubMedGoogle Scholar
  4. 4.
    Huss JM, Kelly DP. Mitochondrial energy metabolism in heart failure: A question of balance. J Clin Invest 2005;115:547-55.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Brown MA, Myears DW, Bergmann SR. Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization. J Nucl Med 1989;30:187-93.PubMedGoogle Scholar
  6. 6.
    Klein LJ, Visser FC, Knaapen P, Peters JH, Teule GJ, Visser CA, et al. Carbon-11 acetate as a tracer of myocardial oxygen consumption. Eur J Nucl Med 2001;28:651-68.CrossRefPubMedGoogle Scholar
  7. 7.
    Hata T, Nohara R, Fujita M, Hosokawa R, Lee L, Kudo T, et al. Noninvasive assessment of myocardial viability by positron emission tomography with 11C acetate in patients with old myocardial infarction usefulness of low-dose dobutamine infusion. Circulation 1996;94:1834-41.CrossRefPubMedGoogle Scholar
  8. 8.
    van den Hoff J, Burchert W, Borner AR, Fricke H, Kuhnel G, Meyer GJ, et al. [1-(11)C]acetate as a quantitative perfusion tracer in myocardial PET. J Nucl Med 2001;42:1174-82.PubMedGoogle Scholar
  9. 9.
    Gropler RJ, Geltman EM, Sampathkumaran K, Perez JE, Moerlein SM, Sobel BE, et al. Functional recovery after coronary revascularization for chronic coronary artery disease is dependent on maintenance of oxidative metabolism. J Am Coll Cardiol 1992;20:569-77.CrossRefPubMedGoogle Scholar
  10. 10.
    Sciacca RR, Akinboboye O, Chou RL, Epstein S, Bergmann SR. Measurement of myocardial blood flow with PET using 1-11C-acetate. J Nucl Med 2001;42:63-70.PubMedGoogle Scholar
  11. 11.
    Timmer SA, Germans T, Gotte MJ, Russel IK, Dijkmans PA, Lubberink M, et al. Determinants of myocardial energetics and efficiency in symptomatic hypertrophic cardiomyopathy. Eur J Nucl Med Mol Imaging 2010;37:779-88.CrossRefPubMedGoogle Scholar
  12. 12.
    Kim IS, Izawa H, Sobue T, Ishihara H, Somura F, Nishizawa T, et al. Prognostic value of mechanical efficiency in ambulatory patients with idiopathic dilated cardiomyopathy in sinus rhythm. J Am Coll Cardiol 2002;39:1264-8.CrossRefPubMedGoogle Scholar
  13. 13.
    Knaapen P, Germans T, Knuuti J, Paulus WJ, Dijkmans PA, Allaart CP, et al. Myocardial energetics and efficiency: Current status of the noninvasive approach. Circulation 2007;115:918-27.CrossRefPubMedGoogle Scholar
  14. 14.
    Heiberg E, Sjogren J, Ugander M, Carlsson M, Engblom H, Arheden H. Design and validation of segment-freely available software for cardiovascular image analysis. BMC Med Imaging 2010;10:1.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Faber TL, Cooke CD, Folks RD, Vansant JP, Nichols KJ, DePuey EG, et al. Left ventricular function and perfusion from gated SPECT perfusion images: An integrated method. J Nucl Med 1999;40:650-9.PubMedGoogle Scholar
  16. 16.
    Harms HJ, Knaapen P, de Haan S, Halbmeijer R, Lammertsma AA, Lubberink M. Automatic generation of absolute myocardial blood flow images using [15O]H2O and a clinical PET/CT scanner. Eur J Nucl Med Mol Imaging 2011;38:930-9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sun KT, Yeatman LA, Buxton DB, Chen K, Johnson JA, Huang SC, et al. Simultaneous measurement of myocardial oxygen consumption and blood flow using [1-carbon-11]acetate. J Nucl Med 1998;39:272-80.PubMedGoogle Scholar
  18. 18.
    Knaapen P, Germans T. Myocardial efficiency in heart failure: Non invasive imaging. Heart Metab 2008;39:14.Google Scholar
  19. 19.
    Currie PJ, Seward JB, Reeder GS, Vlietstra RE, Bresnahan DR, Bresnahan JF, et al. Continuous-wave doppler echocardiographic assessment of severity of calcific aortic stenosis: A simultaneous doppler-catheter correlative study in 100 adult patients. Circulation 1985;71:1162-9.CrossRefPubMedGoogle Scholar
  20. 20.
    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-10.CrossRefPubMedGoogle Scholar
  21. 21.
    Schaefer WM, Lipke CS, Nowak B, Kaiser HJ, Buecker A, Krombach GA, et al. Validation of an evaluation routine for left ventricular volumes, ejection fraction and wall motion from gated cardiac FDG PET: A comparison with cardiac magnetic resonance imaging. Eur J Nucl Med Mol Imaging 2003;30:545-53.CrossRefPubMedGoogle Scholar
  22. 22.
    Rajappan K, Livieratos L, Camici PG, Pennell DJ. Measurement of ventricular volumes and function: A comparison of gated PET and cardiovascular magnetic resonance. J Nucl Med 2002;43:806-10.PubMedGoogle Scholar
  23. 23.
    Li Y, Wang L, Zhao SH, He ZX, Wang DY, Guo F, et al. Gated F-18 FDG PET for assessment of left ventricular volumes and ejection fraction using QGS and 4D-MSPECT in patients with heart failure: A comparison with cardiac MRI. PLoS ONE 2014;. doi: 10.1371/journal.pone.0080227.Google Scholar
  24. 24.
    Chander A, Brenner M, Lautamaki R, Voicu C, Merrill J, Bengel FM. Comparison of measures of left ventricular function from electrocardiographically gated 82Rb PET with contrast-enhanced CT ventriculography: A hybrid PET/CT analysis. J Nucl Med 2008;49:1643-50.CrossRefPubMedGoogle Scholar
  25. 25.
    Wei H, Tian C, Schindler TH, Qiu M, Lu M, Shen R, et al. The impacts of severe perfusion defects, akinetic/dyskinetic segments, and viable myocardium on the accuracy of volumes and LVEF measured by gated (9)(9)mTc-MIBI SPECT and gated (1)(8)F-FDG PET in patients with left ventricular aneurysm: Cardiac magnetic resonance imaging as the reference. J Nucl Cardiol 2014;21:1230-44.CrossRefPubMedGoogle Scholar
  26. 26.
    Hofman HA, Knaapen P, Boellaard R, Bondarenko O, Gotte MJ, van Dockum WG, et al. Measurement of left ventricular volumes and function with O-15-labeled carbon monoxide gated positron emission tomography: Comparison with magnetic resonance imaging. J Nucl Cardiol 2005;12:639-44.CrossRefPubMedGoogle Scholar
  27. 27.
    Mullally J, Goyal P, Simprini LA, Afroz A, Kochav JD, Codella N, et al. Marked variability in published CMR criteria for left ventricular basal slice selection—Impact of methodological discrepancies on LV mass quantification. J Cardiovasc Magn Reson 2013;15:P101.PubMedCentralGoogle Scholar
  28. 28.
    Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for cardiovascular magnetic resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson 2013;15:35.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Vogel-Claussen J, Finn JP, Gomes AS, Hundley GW, Jerosch-Herold M, Pearson G, et al. Left ventricular papillary muscle mass: Relationship to left ventricular mass and volumes by magnetic resonance imaging. J Comput Assist Tomogr 2006;30:426-32.CrossRefPubMedGoogle Scholar
  30. 30.
    Grothues F, Smith GC, Moon JC, Bellenger NG, Collins P, Klein HU, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 2002;90:29-34.CrossRefPubMedGoogle Scholar
  31. 31.
    Beanlands RS, Armstrong WF, Hicks RJ, Nicklas J, Moore C, Hutchins GD, et al. The effects of afterload reduction on myocardial carbon 11-labeled acetate kinetics and noninvasively estimated mechanical efficiency in patients with dilated cardiomyopathy. J Nucl Cardiol 1994;1:3-16.CrossRefPubMedGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2016

Authors and Affiliations

  • Nils Henrik Hansson
    • 1
    Email author
  • Lars Tolbod
    • 2
  • Johannes Harms
    • 2
  • Henrik Wiggers
    • 1
  • Won Yong Kim
    • 1
    • 3
  • Esben Hansen
    • 3
    • 4
  • Tomas Zaremba
    • 1
  • Jørgen Frøkiær
    • 2
  • Steen Jakobsen
    • 2
  • Jens Sørensen
    • 2
  1. 1.Department of CardiologyAarhus University HospitalAarhus CDenmark
  2. 2.Department of Nuclear Medicine & PET-CentreAarhus University HospitalAarhus CDenmark
  3. 3.MR Research CentreAarhus University HospitalAarhus CDenmark
  4. 4.Danish Diabetes AcademyOdenseDenmark

Personalised recommendations