Journal of Nuclear Cardiology

, Volume 22, Issue 4, pp 655–665 | Cite as

Cardiac remodeling in a new pig model of chronic heart failure: Assessment of left ventricular functional, metabolic, and structural changes using PET, CT, and echocardiography

  • Miikka Tarkia
  • Christoffer Stark
  • Matti Haavisto
  • Rasmus Kentala
  • Tommi Vähäsilta
  • Timo Savunen
  • Marjatta Strandberg
  • Ville-Veikko Hynninen
  • Virva Saunavaara
  • Tuula Tolvanen
  • Mika Teräs
  • Johanna Rokka
  • Mikko Pietilä
  • Pekka Saukko
  • Anne Roivainen
  • Antti Saraste
  • Juhani Knuuti
Original Article

Abstract

Aims

Large animal models are needed to study disease mechanisms in heart failure (HF). In the present study we characterized the functional, metabolic, and structural changes of myocardium in a novel pig model of chronic myocardial infarction (MI) by using multimodality imaging and histology.

Methods and Results

Male farm pigs underwent a two-step occlusion of the left anterior descending coronary artery with concurrent distal ligation and implantation of a proximal ameroid constrictor (HF group), or sham operation (control group). Three months after the operation, cardiac output and wall stress were measured by echocardiography. Left ventricle (LV) volumes and mass were measured by computed tomography (CT). Myocardial perfusion was evaluated by [15O]water and oxygen consumption using [11C]acetate positron emission tomography, and the efficiency of myocardial work was calculated. Histological examinations were conducted to detect MI, hypertrophy, and fibrosis. Animals in the HF group had a large anterior MI scar. CT showed larger LV diastolic volume and lower ejection fraction in HF pigs than in controls. Perfusion and oxygen consumption in the remote non-infarcted myocardium were preserved in HF pigs as compared to controls. Global LV work and efficiency were significantly lower in HF than control pigs and was associated with increased wall stress. Histology showed myocyte hypertrophy but not increased interstitial fibrosis in the remote segments in HF pigs.

Conclusions

The chronic post-infarction model of HF is suitable for studies aimed to evaluate LV remodeling and changes in oxidative metabolism and can be useful for testing new therapies for HF.

Keywords

Heart failure cardiac remodeling myocardial perfusion myocardial oxygen consumption myocardial efficiency positron emission tomography 

References

  1. 1.
    Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 2014;383:1933-43.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE. Left ventricular remodeling in heart failure: Current concepts in clinical significance and assessment. JACC Cardiovasc Imaging 2011;4:98-108.CrossRefPubMedGoogle Scholar
  3. 3.
    Fallavollita JA, Riegel BJ, Suzuki G, Valeti U, Canty JM. Mechanism of sudden cardiac death in pigs with viable chronically dysfunctional myocardium and ischemic cardiomyopathy. Am J Physiol 2005;289:H2688-96.Google Scholar
  4. 4.
    Kamimura R, Suzuki S, Nozaki S, Sakamoto H, Maruno H, Kawaida H. Branching patterns in coronary artery and ischemic areas induced by coronary arterial occlusion in the CLAWN miniature pig. Exp Anim 1996;45:149-53.CrossRefPubMedGoogle Scholar
  5. 5.
    Huang Z, Ge J, Sun A, Wang Y, Zhang S, Cui J, et al. Ligating LAD with its whole length rather than diagonal branches as coordinates is more advisable in establishing stable myocardial infarction model of swine. Exp Anim 2010;59:431-9.CrossRefPubMedGoogle Scholar
  6. 6.
    Teramoto N, Koshino K, Yokoyama I, Miyagawa S, Zeniya T, Hirano Y, et al. Experimental pig model of old myocardial infarction with long survival leading to chronic left ventricular dysfunction and remodeling as evaluated by PET. J Nucl Med 2011;52:761-8.CrossRefPubMedGoogle Scholar
  7. 7.
    Knaapen P, Germans T, Knuuti J, Paulus WJ, Dijkmans PA, Allaart CP, et al. Myocardial energetics and efficiency: Current status of the noninvasive approach. Circulation 2007;115:918-27.CrossRefPubMedGoogle Scholar
  8. 8.
    Armbrecht JJ, Buxton DB, Schelbert HR. Validation of [1-11C]acetate as a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, postischemic, and hyperemic canine myocardium. Circulation 1990;81:1594-605.CrossRefPubMedGoogle Scholar
  9. 9.
    Brown M, Marshall DR, Sobel BE, Bergmann SR. Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation 1987;76:687-96.CrossRefPubMedGoogle Scholar
  10. 10.
    Brown MA, Myears DW, Bergmann SR. Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography. J Am Coll Cardiol 1988;12:1054-63.CrossRefPubMedGoogle Scholar
  11. 11.
    Gropler RJ. Noninvasive measurements of myocardial oxygen consumption—Can we do better? J Am Coll Cardiol 2003;41:468-70.CrossRefPubMedGoogle Scholar
  12. 12.
    Kalff V, Hicks RJ, Hutchins G, Topol E, Schwaiger M. Use of carbon-11 acetate and dynamic positron emission tomography to assess regional myocardial oxygen consumption in patients with acute myocardial infarction receiving thrombolysis or coronary angioplasty. Am J Cardiol 1993;71:529-35.CrossRefPubMedGoogle Scholar
  13. 13.
    Walsh MN, Geltman EM, Brown MA, Henes CG, Weinheimer CJ, Sobel BE, et al. Noninvasive estimation of regional myocardial oxygen consumption by positron emission tomography with carbon-11 acetate in patients with myocardial infarction. J Nucl Med 1989;30:1798-808.PubMedGoogle Scholar
  14. 14.
    Ohte N, Narita H, Iida A, Wakami K, Asada K, Fukuta H, et al. Impaired myocardial oxidative metabolism in the remote normal region in patients in the chronic phase of myocardial infarction and left ventricular remodeling. J Nucl Cardiol 2009;16:73-81.CrossRefPubMedGoogle Scholar
  15. 15.
    Ohte N, Kurokawa K, Iida A, Narita H, Akita S, Yajima K, et al. Myocardial oxidative metabolism in remote normal regions in the left ventricles with remodeling after myocardial infarction: Effect of beta-adrenoceptor blockers. J Nucl Med 2002;43:780-5.PubMedGoogle Scholar
  16. 16.
    Opie LH, Knuuti J. The adrenergic-fatty acid load in heart failure. J Am Coll Cardiol 2009;54:1637-46.CrossRefPubMedGoogle Scholar
  17. 17.
    Beanlands RS, Schwaiger M. Changes in myocardial oxygen consumption and efficiency with heart failure therapy measured by 11C acetate PET. Can J Cardiol 1995;11:293-300.PubMedGoogle Scholar
  18. 18.
    Greupner J, Zimmermann E, Grohmann A, Dübel H-P, Althoff TF, Althoff T, et al. Head-to-head comparison of left ventricular function assessment with 64-row computed tomography, biplane left cine ventriculography, and both 2- and 3-dimensional transthoracic echocardiography: Comparison with magnetic resonance imaging as the reference s. J Am Coll Cardiol 2012;59:1897-907.CrossRefPubMedGoogle Scholar
  19. 19.
    Wu Y, Chan CW, Nicholls JM, Liao S, Tse HF, Wu EX. MR study of the effect of infarct size and location on left ventricular functional and microstructural alterations in porcine models. J Magn Reson 2009;29:305-12.CrossRefGoogle Scholar
  20. 20.
    Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 2001;23:291-9.PubMedGoogle Scholar
  21. 21.
    Iida H, Rhodes CG, De SR, Araujo LI, Bloomfield PM, Lammertsma AA, et al. Use of the left ventricular time-activity curve as a noninvasive input function in dynamic oxygen-15-water positron emission tomography. J Nucl Med 1992;33:1669-77.PubMedGoogle Scholar
  22. 22.
    Sorensen J, Valind S, Andersson LG. Simultaneous quantification of myocardial perfusion, oxidative metabolism, cardiac efficiency and pump function at rest and during supine bicycle exercise using 1-11C-acetate PET—A pilot study. Clin Physiol Funct Imaging 2010;30:279-84.CrossRefPubMedGoogle Scholar
  23. 23.
    Van den Hoff J, Burchert W, Borner AR, Fricke H, Kuhnel G, Meyer GJ, et al. [1-(11)C]Acetate as a quantitative perfusion tracer in myocardial PET. J Nucl Med 2001;42:1174-82.PubMedGoogle Scholar
  24. 24.
    Wolpers HG, Burchert W, van den Hoff J, Weinhardt R, Meyer GJ, Lichtlen PR. Assessment of myocardial viability by use of 11C-acetate and positron emission tomography. Threshold criteria of reversible dysfunction. Circulation 1997;95:1417-24.CrossRefPubMedGoogle Scholar
  25. 25.
    Ukkonen H, Tops L, Saraste A, Naum A, Koistinen J, Bax J, et al. The effect of right ventricular pacing on myocardial oxidative metabolism and efficiency: Relation with left ventricular dyssynchrony. Eur J Nucl Med Mol Imaging 2009;36:2042-8.CrossRefPubMedGoogle Scholar
  26. 26.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-42.CrossRefPubMedGoogle Scholar
  27. 27.
    Ishikawa K, Ladage D, Takewa Y, Yaniz E, Chen J, Tilemann L, et al. Development of a preclinical model of ischemic cardiomyopathy in swine. Am J Physiol 2011;301:H530-7.CrossRefGoogle Scholar
  28. 28.
    Fish KM, Ladage D, Kawase Y, Karakikes I, Jeong D, Ly H, et al. AAV9.I-1c delivered via direct coronary infusion in a porcine model of heart failure improves contractility and mitigates adverse remodeling. Circ Heart Fail 2013;6:310-7.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Shen Y-T, Vatner SF. Mechanism of impaired myocardial function during progressive coronary stenosis in conscious pigs: Hibernation versus stunning? Circ Res 1995;76:479-88.CrossRefPubMedGoogle Scholar
  30. 30.
    Schuleri KH, Centola M, Choi SH, Evers KS, Dawoud F, George RT, et al. CT for evaluation of myocardial cell therapy in heart failure: A comparison with CMR imaging. JACC Cardiovasc Imaging 2011;4:1284-93.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Witschey WRT, Zsido GA, Koomalsingh K, Kondo N, Minakawa M, Shuto T, et al. In vivo chronic myocardial infarction characterization by spin locked cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012;14:37.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Rissanen TT, Nurro J, Halonen PJ, Tarkia M, Saraste A, Rannankari M, et al. The bottleneck stent model for chronic myocardial ischemia and heart failure in pigs. Am J Physiol 2013. doi:10.1152/ajpheart.00561.2013.Google Scholar
  33. 33.
    Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation 2000;101:2981-8.CrossRefPubMedGoogle Scholar
  34. 34.
    Lorell BH, Carabello BA. Left ventricular hypertrophy: Pathogenesis, detection, and prognosis. Circulation 2000;102:470-9.CrossRefPubMedGoogle Scholar
  35. 35.
    Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev 1999;79:215-62.PubMedGoogle Scholar
  36. 36.
    Nakano K, Sugawara M, Tamiya K, Satomi G, Koyanagi H. A new approach to defining regional work of the ventricle and evaluating regional cardiac function: Mean wall stress-natural logarithm of reciprocal of wall thickness relationship. Heart Vessel 1986;2:74-80.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2015

Authors and Affiliations

  • Miikka Tarkia
    • 1
  • Christoffer Stark
    • 2
    • 3
  • Matti Haavisto
    • 1
  • Rasmus Kentala
    • 2
  • Tommi Vähäsilta
    • 2
    • 3
  • Timo Savunen
    • 2
    • 3
  • Marjatta Strandberg
    • 3
  • Ville-Veikko Hynninen
    • 4
  • Virva Saunavaara
    • 1
  • Tuula Tolvanen
    • 1
  • Mika Teräs
    • 1
  • Johanna Rokka
    • 1
  • Mikko Pietilä
    • 3
  • Pekka Saukko
    • 5
  • Anne Roivainen
    • 1
    • 6
  • Antti Saraste
    • 1
    • 3
    • 7
  • Juhani Knuuti
    • 1
  1. 1.Turku PET CentreUniversity of Turku and Turku University HospitalTurkuFinland
  2. 2.Research Centre of Applied and Preventive Cardiovascular MedicineUniversity of TurkuTurkuFinland
  3. 3.Heart CenterTurku University Hospital and University of TurkuTurkuFinland
  4. 4.Department of Anesthesiology, Intensive Care, Emergency Care and Pain MedicineTurku University HospitalTurkuFinland
  5. 5.Department of Forensic MedicineUniversity of TurkuTurkuFinland
  6. 6.Turku Center for Disease ModelingUniversity of TurkuTurkuFinland
  7. 7.Institute of Clinical MedicineUniversity of TurkuTurkuFinland

Personalised recommendations