Journal of Nuclear Cardiology

, Volume 20, Issue 5, pp 891–907 | Cite as

Taking the perfect nuclear image: Quality control, acquisition, and processing techniques for cardiac SPECT, PET, and hybrid imaging

  • James A. CaseEmail author
  • Timothy M. Bateman
Review Article


Nuclear Cardiology for the past 40 years has distinguished itself in its ability to non-invasively assess regional myocardial blood flow and identify obstructive coronary disease. This has led to advances in managing the diagnosis, risk stratification, and prognostic assessment of cardiac patients. These advances have all been predicated on the collection of high quality nuclear image data. National and international professional societies have established guidelines for nuclear laboratories to maintain high quality nuclear cardiology services. In addition, laboratory accreditation has further advanced the goal of the establishing high quality standards for the provision of nuclear cardiology services. This article summarizes the principles of nuclear cardiology single photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging and techniques for maintaining quality: from the calibration of imaging equipment to post processing techniques. It also will explore the quality considerations of newer technologies such as cadmium zinc telleride (CZT)-based SPECT systems and absolute blood flow measurement techniques using PET.


Image artifacts image processing image reconstruction PET imaging SPECT 


  1. 1.
    Thomas A, Holly TA, Abbot BG, Mallah MA, Calnon DA, Cohen MC, et al. Single photon emission computed tomograph. J Nucl Cardiol 2010;17:941-73.CrossRefGoogle Scholar
  2. 2.
    Dilsizian V et al. ASNC imaging guidelines for nuclear cardiology procedures: PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol 2009;16(4):651. Scholar
  3. 3.
    International Atomic Energy Agency. Radiological Protection for Medical Exposition to Ionizing Radiation. IAEA Safety Standard; 2002: RS-G-15.Google Scholar
  4. 4.
    Cerqueira MD, Allman KC, Ficaro EP, Hansen CL, Nichols KJ, Thompson RC. American Society for Nuclear Cardiology Information Statement: Recommendations for reducing radiation exposure in myocardial perfusion imaging. J Nucl Cardiol 2010;17:709-18.PubMedCrossRefGoogle Scholar
  5. 5.
    SNM position statement on dose optimization for nuclear medicine and molecular imaging procedures, June 2012. Accessed 11 June 2012.
  6. 6.
    Friedman J, Berman DS, Van Train K, et al. Patient motion in thallium-201 myocardial SPECT imaging: An easily identified frequent source of artifactual defect. Clin Nucl Med 1988;13:321-4.PubMedCrossRefGoogle Scholar
  7. 7.
    DePuey EG, Garcia EV. Optimal specificity of thallium-201 SPECT through recognition of imaging artifacts. J Nucl Med 1989;30:441-9.PubMedGoogle Scholar
  8. 8.
    Friedman J, Van Train K, Maddahi J, et al. “Upward creep” of the heart: A frequent source of false-positive reversible defects during thallium-201 stress-redistribution SPECT. J Nucl Med 1989;30:1718-22.PubMedGoogle Scholar
  9. 9.
    Sorrell V, Figueroa B, Hansen CL. The “hurricane sign”: Evidence of patient motion artifact on cardiac single-photon emission computed tomographic imaging. J Nucl Cardiol 1996;3:86-8.PubMedCrossRefGoogle Scholar
  10. 10.
    Wheat JM, et al. Incidence and characterization of patient motion in myocardial perfusion SPECT: Part 1. J Nucl Med Technol 2004;32(2):60-5.PubMedGoogle Scholar
  11. 11.
    Botvinick EH, Zhu YY, O’Connell WJ, Dae MW. A quantitative assessment of patient motion and its effect on myocardial perfusion SPECT images. J Nucl Med 1993;34:303-10.PubMedGoogle Scholar
  12. 12.
    Massardo T, Jaimovich R, Faure R, Muñoz M, Alay R, Gatica H. Motion correction and myocardial perfusion SPECT using manufacturer provided software. Does it affect image interpretation? Eur J Nucl Med Mol Imaging 2010;37(4):758-64.PubMedCrossRefGoogle Scholar
  13. 13.
    DePuey EG. How to detect and avoid myocardial perfusion SPECT artifacts. J Nucl Med 1994;35:699-702.PubMedGoogle Scholar
  14. 14.
    DePuey EG, Rozanski A. Using gated technetium-99m-sestamibi SPECT to characterize fixed myocardial defects as infarct or artifact. J Nucl Med 1995;36:952-5.PubMedGoogle Scholar
  15. 15.
    Picano E, Bedetti G, Varga A, Cseh E. The comparable diagnostic accuracies of dobutamine-stress and dipyridamole-stress echocardiographies: A meta-analysis. Coron Artery Dis 2000;11:151-9.PubMedCrossRefGoogle Scholar
  16. 16.
    Duvernoy CS, Ficaro EP, Karabajakian MZ, Rose PA, Corbett JR. Improved detection of left main coronary artery disease with attenuation-corrected SPECT. J Nucl Cardiol 2000;7:639-48.PubMedCrossRefGoogle Scholar
  17. 17.
    Hendel RC, Berman DS, Cullom SJ, Follansbee W, Heller GV, Kiat H, et al. Multicenter clinical trial to evaluate the efficacy of correction for photon attenuation and scatter in SPECT myocardial perfusion imaging. Circulation 1999;99:2742-9.PubMedCrossRefGoogle Scholar
  18. 18.
    Ficaro EA, Fessler JA, Shreve PD, Kritzman JN, Rose PA, Corbett JR. Simultaneous transmission/emission myocardial perfusion tomography: Diagnostic accuracy of attenuation corrected Tc-99m sestamibi single-photon emission computed tomography. Circulation 1996;93:463-73.PubMedCrossRefGoogle Scholar
  19. 19.
    Cullom SJ, Case JA, Bateman TM. Attenuation correction of cardiac SPECT: Clinical and developmental challenges. J Nucl Med 2000;41:860-2.Google Scholar
  20. 20.
    Corbett JR, Ficaro EP. Clinical review of attenuation-corrected cardiac SPECT. J Nucl Cardiol 1999;6:54-68.PubMedCrossRefGoogle Scholar
  21. 21.
    Thompson RC, Heller GV, Johnson LL, Case JA, Cullom SJ, Garcia EV, et al. Value of attenuation correction on ECG-gated SPECT myocardial perfusion imaging related to body mass index. J Nucl Cardiol 2005;12:195-202.PubMedCrossRefGoogle Scholar
  22. 22.
    Bateman TM, Heller GV, McGhie AI, Courter SA, Kennedy KF, Katten D, et al. Application of simultaneous Gd-153 line source attenuation correction to half-time stress only SPECT acquisitions: A multicenter clinical evaluation. J Am Coll Cardiol 2008;51(Suppl A):A171.Google Scholar
  23. 23.
    Heller GV, Bateman TM, Johnson LL, Cullom SJ, Case JA, Galt JR, et al. Clinical value of attenuation correction in stress-only Tc-99m sestamibi SPECT imaging. J Nucl Cardiol 2004;11:273-81.PubMedCrossRefGoogle Scholar
  24. 24.
    Hendel RC, Corbett JR, Cullom SJ, DePuey EG, Garcia EV, Bateman TM. The value and practice of attenuation correction for myocardial perfusion SPECT imaging: A joint position statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. J Nucl Cardiol 2002;9:135-43.PubMedCrossRefGoogle Scholar
  25. 25.
    Hendel RC. Attenuation correction: Eternal dilemma or real improvement? Q J Nucl Med Mol Imaging 2005;49:30-42.PubMedGoogle Scholar
  26. 26.
    Bateman TM, Heller GV, McGhie AI, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: Comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 2006;13:24-33.PubMedCrossRefGoogle Scholar
  27. 27.
    Sampson UK, Limaye A, Dorbala S, et al. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography (PET-CT) in the detection of coronary artery disease. J Am Coll Cardiol 2007;49:1052-8.PubMedCrossRefGoogle Scholar
  28. 28.
    Hachamovitch R, Jonson JR, Hlatky MA, Cantagallo L, Johnson BH, Coughlan M, et al. The study of myocardial perfusion and coronary anatomy imaging roles in CAD (SPARC): Design, rationale, and baseline patient characteristics of a prospective, multicenter observational registry comparing PET, SPECT, and CTA for resource utilization and clinical outcome. J Nucl Cardiol 2009;16:935-48.PubMedCrossRefGoogle Scholar
  29. 29.
    McArdel BA, Dowsley TF, deKemp RA, Wellis GA, Beanlands RS. Does Rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease? A systematic review and meta-analysis. J Am Coll Cardiol 2012;60:1828-37.CrossRefGoogle Scholar
  30. 30.
    Schwartz R, Mixon L, Germano G, Chaudry I, Armstrong K, Mackin M. Gated SPECT reconstruction with zoom and depth dependent filter improves accuracy of volume and LVEF in small hearts. J Nucl Cardiol 1999;6:S17 (abstract).Google Scholar
  31. 31.
    Ezuddin S, Sfakianakis G, Pay I, Sanchez P. Comparative study to determine the effect of different zoom factors on the calculation of LVEF from gated myocardial perfusion SPECT with TL-201 and Tc-99m sestamibi in patients with small hearts. J Nucl Med 1999;40:169P (abstract).Google Scholar
  32. 32.
    Johnson KM, Johnson HE, Dowe DA. Left ventricular apical thinning as normal anatomy. J Comput Assist Tomogr 2009;33:334-7.PubMedCrossRefGoogle Scholar
  33. 33.
    Haber SF, Derenzo SE, Uber D. Application of mathematical removal of positron blurring in positron emission tomography. IEEE Trans Nucl Sci 1990;37:1293-9.CrossRefGoogle Scholar
  34. 34.
    Wassenaar R, deKemp RA. Characterization of PET partial volume corrections for variable myocardial wall thicknesses. IEEE Trans Nucl Sci 2006;53:175-80.CrossRefGoogle Scholar
  35. 35.
    National Electronics Manufacturers Association. Performance Measurements of Gamma Cameras, NEMA NU 1-2007, Dec 2007.Google Scholar
  36. 36.
    The IAC Standards and Guidelines for Nuclear/PET Accreditation. Intersocietal Accreditation Commission, 2012. Accessed 15 August 2012.
  37. 37.
    Cooper JA, Neumann PH, McCandless BK. Effect of patient motion on tomographic myocardial perfusion imaging. J Nucl Med 1992;33:1566-71.PubMedGoogle Scholar
  38. 38.
    O’Connor MK, Kanal KM, Gebhard MW, Rossman PJ. Comparison of four motion correction techniques in SPECT imaging of the heart: A cardiac phantom study. J Nucl Med 1998;39:2027-34.PubMedGoogle Scholar
  39. 39.
    Van Dongen A, van Rijk PP. Minimizing liver, bowel and gastric activity in myocardial perfusion SPECT. J Nucl Med 2000;41:1315-7.PubMedGoogle Scholar
  40. 40.
    King MA, Tsui BMW, Pan T-S. Attenuation compensation for cardiac single-photon emission computed tomographic imaging; Part 1. Impact of attenuation and methods of estimating attenuation maps. J Nucl Cardiol 1995;2:513-24.PubMedCrossRefGoogle Scholar
  41. 41.
    Vitola JV, Brambatti JC, Caligaris F, et al. Exercise supplementation to dipyridamole prevents hypotension, improves electrocardiogram sensitivity, and increases heart-to-liver activity ratio on Tc-99m sestamibi imaging. J Nucl Cardiol 2001;8:652-9.PubMedCrossRefGoogle Scholar
  42. 42.
    Henzlova MJ, Cerqueria MD, Mahmarian JJ, Yao S-S. Stress protocols and tracers. J Nucl Cardiol 2006;13:e80-90.PubMedCrossRefGoogle Scholar
  43. 43.
    Taillefer R, editor. Nuclear Cardiology. New York: McGraw Hill; 2004.Google Scholar
  44. 44.
    Sciagra R, Sotgia B, Boni N, Pupi A. Assessment of the influence of atrial fibrillation on gated SPECT perfusion data by comparison with simultaneously acquired nongated SPECT data. J Nucl Med 2008;49:1283-7.PubMedCrossRefGoogle Scholar
  45. 45.
    Kadrmas DJ, Frey EC, Karimi SS, Tsui BM. Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction. Phys Med Biol 1998;43:857-73.PubMedCrossRefGoogle Scholar
  46. 46.
    Borges-Neto S, Pagnanelli RA, Shaw LK, et al. Clinical results of a novel wide beam reconstruction method for shortening scan time of Tc-99m cardiac SPECT perfusion studies. J Nucl Cardiol 2007;14:555-65.PubMedCrossRefGoogle Scholar
  47. 47.
    Druz RS, Phillips LM, Chugkowski M, Boutis L, Rutkin B, Katz S. Wide-beam reconstruction half-time SPECT improves diagnostic certainty and preserves normalcy and accuracy: A quantitative perfusion analysis. J Nucl Cardiol 2011;18:52-61.PubMedCrossRefGoogle Scholar
  48. 48.
    Venero CV, Heller GV, Bateman TM, et al. A multicenter evaluation of a new post-processing method with depth-dependent collimator resolution applied to full-time and half-time acquisitions without and with simultaneously acquired attenuation correction. J Nucl Cardiol 2009;16:714-25.PubMedCrossRefGoogle Scholar
  49. 49.
    Gambhir SS, Berman DS, Ziffer J, et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med 2009;50:635-43.PubMedCrossRefGoogle Scholar
  50. 50.
    Hawman PC, Haines EJ. The cardiofocal collimator: A variable-focus collimator for cardiac SPECT. Phys Med Biol 1994;39:439-50.PubMedCrossRefGoogle Scholar
  51. 51.
    D-SPECT User Manual, Sept. 2011, version MAN0003 Rev. G.1.Google Scholar
  52. 52.
    Esteves FP, Raggi P, Folks Rd, Zeidar Z, Askew WA, Rispler S, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: Multicenter comparison with standard dual detector cameras. J Nucl Cardiol 2009;16:927-34.PubMedCrossRefGoogle Scholar
  53. 53.
    Garcia EV. Cardiac dedicated ultrafast SPECT cameras: New designs and clinical implications. J Nucl Med 2011;52:210-7.PubMedCrossRefGoogle Scholar
  54. 54.
    Matsumoto N, Berman DS, Kavanagh PB, Gerlach J, Hayes SW, Lewin HC, et al. Quantitative assessment of motion artifacts and validation of a new motion-correction program for myocardial perfusion SPECT. J Nucl Med 2001;42:687-94.PubMedGoogle Scholar
  55. 55.
    Bai C, Maddahi J, Kindem J, Conwell R, Gurley M, Old R. Development and evaluation of a new fully automatic motion detection and correction technique in cardiac SPECT imaging. J Nucl Cardiol 2009;16:580-9.PubMedCrossRefGoogle Scholar
  56. 56.
    Taillefer R, DePuey EG, Udelson JE, Beller GA, Latour Y, Reeves F. Comparative diagnostic accuracy of Tl-201 and Tc-99m sestamibi SPECT imaging (perfusion and ECG-gated SPECT) in detecting coronary artery disease in women. J Am Coll Cardiol 1997;29:69-77.PubMedCrossRefGoogle Scholar
  57. 57.
    Eisner RL, Tamas MJ, Cloninger K, Shonkoff D, Oates JA, Gober AM, et al. Normal SPECT thallium-201 bull’s-eye display: Gender differences. J Nucl Med 1988;29:1901-9.PubMedGoogle Scholar
  58. 58.
    Germano G, Kavanagh PB, Waechter P, Areeda J, Van Kriekinge S, Sharir T, et al. A new algorithm for the quantification of myocardial perfusion SPECT. I: Technical principles and reproducibility. J Nucl Med 2000;41:712-9.PubMedGoogle Scholar
  59. 59.
    Ficaro EP, Lee BC, Kritzman JN, Corbett JR. Corridor4DM: The Michigan method for quantitative nuclear cardiology. J Nucl Cardiol 2007;4:455-65.CrossRefGoogle Scholar
  60. 60.
    Grossman GB, Garcia EV, Bateman TM, et al. Quantitative Tc-99m sestamibi attenuation-corrected SPECT: Development and multicenter trial validation of myocardial perfusion stress gender-independent normal database in an obese population. J Nucl Cardiol 2004;11:263-72.PubMedCrossRefGoogle Scholar
  61. 61.
    Tung C-H, Gullberg GT, Zeng GL, Christian PE, Datz FL, Morgan HT. Nonuniform attenuation correction using simultaneous transmission and emission converging tomography. IEEE Trans Nucl Sci 1992;39:1134-43.CrossRefGoogle Scholar
  62. 62.
    Case JA, Hsu BL, Bateman TM, Cullom SJ. A Bayesian iterative transmission gradient reconstruction algorithm for cardiac SPECT attenuation correction. J Nucl Cardiol 2007;14:324-33.PubMedCrossRefGoogle Scholar
  63. 63.
    Bocher M, Balan A, Krausz Y, Shrem Y, Lonn A, Wilk M, et al. Gamma camera mounted anatomical x-ray tomography: Technology, system characteristics and first images. Eur J Nucl Med 2000;27:619-27.PubMedCrossRefGoogle Scholar
  64. 64.
    Ogawa K. Simulation study of triple-energy-window scatter correction in combined Tl-201, Tc-99m SPECT. Ann Nucl Med 1994;8(4):277-81.PubMedCrossRefGoogle Scholar
  65. 65.
    Hsu B, Cullom SJ, Bateman TM, Case JA. Energy-based correction of I-123 high-energy contaminants degrading gamma camera uniformity. J Nucl Med 2006;47:193P.Google Scholar
  66. 66.
    Gagnon D, Todd-Pokropek A, Arsenault A, Dupras G. Introduction to holospectral imaging in nuclear medicine for scatter subtraction. IEEE Trans Med Imaging 1989;8:245-50.PubMedCrossRefGoogle Scholar
  67. 67.
    Frey EC, Tsui BMW. A new method for modeling the spatially variant, object dependent scatter response function in SPECT. IEEE Nucl Sci Symp Med Imaging Conf Rec 1996;2:1082-6.Google Scholar
  68. 68.
    Loghin C, Sdringola S, Gould KL. Common artifacts in PET myocardial perfusion images due to attenuation-emission misregistration: Clinical significance, causes, and solutions. J Nucl Med 2004;45:1029-39.PubMedGoogle Scholar
  69. 69.
    Case JA, Heller GV, Cullom SJ, Hsu BL, Noble GL, Masse M, et al. Sensitivity of myocardial perfusion PET/CT imaging scan appearance on accurate transmission/emission registration. J Nucl Cardiol 2005;12:S117.CrossRefGoogle Scholar
  70. 70.
    Gould L, Pan T-S, Laghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: A definite analysis of causes, consequences and corrections. J Nucl Med 2007;48:1112-21.PubMedCrossRefGoogle Scholar
  71. 71.
    Martinez-Moller A, Souvatzoglou M, Navab N, Schwaiger M, Nekolla SG. Artifacts from misaligned CT in cardiac perfusion PET/CT studies: Frequency, effects, and potential solutions. J Nucl Med 2007;48:188-93.PubMedGoogle Scholar
  72. 72.
    Livieratos L, Rajappan K, Stegger L, Schafers K, Bailey DL, Camici PG. Respiratory gating of cardiac PET data in list-mode acquisition. Eur J Nucl Med Mol Imaging 2006;33:584-8.PubMedCrossRefGoogle Scholar
  73. 73.
    Woo J, Cheng V, Dey D, Lazewatzky J, Ramesh A, Hayes S, et al. Automatic 3D registration of dynamic stress and rest (82)Rb and flurpiridaz F 18 myocardial perfusion PET data for patient motion detection and correction. Med Phys 2011;38:6313-26.PubMedCrossRefGoogle Scholar
  74. 74.
    Townsend DW. From 3D positron emission tomography to positron emission tomography/computed tomography: What did we learn? Mol Imaging Biol 2004;6:275-90.PubMedCrossRefGoogle Scholar
  75. 75.
    Ollinger JM. Model-based scatter correction for fully 3D PET. Phys Med Biol 1996;41:153-76.PubMedCrossRefGoogle Scholar
  76. 76.
    Werling A. Model-based scatter correction for positron emission tomography (in German). Med Phys 2002;29:105.CrossRefGoogle Scholar
  77. 77.
    Watson C, Newport D, Casey M, DeKemp R, Beanlands R, Schmand M. Evaluation of simulation-based scatter correction for 3-D PET cardiac imaging. IEEE Nucl Sci Symp Conf Rec 1997;44:90-7.CrossRefGoogle Scholar
  78. 78.
    Esteves FP, Nye JA, Khan A, Folks RD, Raghuveer KH, Garcia EV, et al. Prompt-gamma compensation in Rb-82 myocardial perfusion 3D PET/CT. J Nucl Cardiol 2010;17:247-53.PubMedCrossRefGoogle Scholar
  79. 79.
    Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998;25:2046-53.PubMedCrossRefGoogle Scholar
  80. 80.
    Hsu BL, Case JA, Moser KW, Bateman TM, Cullom SJ. Reconstruction of rapidly acquired Germanium-68 transmission scans for cardiac PET attenuation correction. J Nucl Cardiol 2007;14:706-14.PubMedCrossRefGoogle Scholar
  81. 81.
    Alessio AM, Kohlmyer S, Branch K, Chen G, Caldwell J, Kinahan P. Cine CT for attenuation correction in cardiac PET/CT. J Nucl Med 2007;48:794-801.PubMedCrossRefGoogle Scholar
  82. 82.
    de Juan R, Seifert B, Berthold T, von Schulthess GK, Goerres GW. Clinical evaluation of a breathing protocol for PET/CT. Eur Radiol 2004;14:1118-23.PubMedCrossRefGoogle Scholar
  83. 83.
    Beyer T, Antoch G, Blodgett T, Freudenberg LF, Akhurst T, Mueller S. Dual-modality PET/CT imaging: The effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging 2003;30:588-96.PubMedCrossRefGoogle Scholar
  84. 84.
    Goerres GW, Kamel E, Heidelberg TN, Schwitter MR, Burger C, von Schulthess GK. PET-CT image co-registration in the thorax: Influence of respiration. Eur J Nucl Med Mol Imaging 2002;29:351-60.PubMedCrossRefGoogle Scholar
  85. 85.
    DiFilippo FP, Brunken RC. Do pacemaker leads and ICDs cause metal-related artifact in cardiac PET/CT. J Nucl Med 2005;46:436-43.PubMedGoogle Scholar
  86. 86.
    Abdoli M, Dierckx RAJO, Zaidi H. Metal artifact reduction strategies for improved attenuation correction in hybrid PET/CT imaging. Med Phys 2012;39:3343-61.PubMedCrossRefGoogle Scholar
  87. 87.
    Di Carli M, Czernin J, Hoh CK, Gerbaudo VH, Brunken RC, Huang SC, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995;91:1944-51.PubMedCrossRefGoogle Scholar
  88. 88.
    Ziadi MC, deKemp RA, Williams K, Guo A, Renaud JM, Chow BJW, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol 2012;19:670-80.PubMedCrossRefGoogle Scholar
  89. 89.
    Rader VJ, Courter SA, Case JA, Kennedy KF, Bateman TM. Prevalence and correlates of impaired myocardial blood flow reserve in patients with normal myocardial perfusion rubidium-82 positron emission tomography. Circulation 2010;122:A14503.Google Scholar
  90. 90.
    Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Shelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Col Cardiol 1990;5:1032-42.CrossRefGoogle Scholar
  91. 91.
    Yoshida K, Mullani N, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med 1996;37:1701-12.PubMedGoogle Scholar
  92. 92.
    Lortie M, Beanlands RS, Yoshinaga K, Klein R, DaSalvia JN, deKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34:1765-74.PubMedCrossRefGoogle Scholar
  93. 93.
    Hutchins GD, Caraher JM, Raylman RR. A region of interest strategy for minimizing resolution distortions in quantitative myocardial PET studies. J Nucl Med 1992;33:1243-50.PubMedGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2013

Authors and Affiliations

  1. 1.Saint-Luke’s Mid America Heart InstituteKansas CityUSA
  2. 2.University of Missouri-Kansas CityKansas CityUSA
  3. 3.Cardiovascular Imaging TechnologiesKansas CityUSA

Personalised recommendations