Journal of Nuclear Cardiology

, Volume 20, Issue 3, pp 415–425 | Cite as

Quantitative assessment of cardiac mechanical synchrony using equilibrium radionuclide angiography

  • Harmandeep Singh
  • Abhinav Singhal
  • Punit Sharma
  • Chetan D. Patel
  • Sandeep Seth
  • Arun Malhotra
Original Article



Data on normal parameters of cardiac mechanical synchrony is limited, variable and obtained from small cohorts till date. In most studies, software used for such assessment has not been mentioned. The aim of study is to establish normal values of mechanical synchrony with equilibrium radionuclide angiography (ERNA) in a larger population using commercially available software.


We retrospectively analysed ERNA studies of 108 patients having low pretest likelihood of coronary artery disease, no known history of cardiac disease, normal electrocardiogram and whose ERNA studies were considered normal by experienced observers. In addition, ten patients diagnosed with dilated cardiomyopathy (DCM) and having LVEF ≤ 40% underwent ERNA. Fourier first harmonic analysis of phase images was used to quantify synchrony parameters using commercially available software (XT-ERNA). Intraventricular synchrony for each ventricle was measured as the standard deviation of the LV and RV mean phase angles (SD LVmPA and SD RVmPA, respectively). Interventricular synchrony was measured as LV-RVmPA. Absolute interventricular delay was calculated as absolute difference between LV and RVmPA (without considering ± sign). All variables were expressed in milliseconds (ms) and degree (°). Intra-observer and inter-observer variabilities were assessed. Cut-off values for parameters were calculated from the normal database, and validated against patient group.


On phase analysis, LVmPA was observed to be 343 ± 48.5 milliseconds (174.7° ± 18.5°), SD LVmPA was 16.3 ± 5.4 milliseconds (8.2° ± 2.5°), RVmPA was 339 ± 50.4 milliseconds (171.8° ± 18.5°) and SD RVmPA was 37.3 ± 15.7 milliseconds (18.7° ± 7.2°). LV-RVmPA was observed to be 3.9 ± 21.7 milliseconds (2.9° ± 9.6°) and absolute interventricular delay was 16.3 ± 14.8 milliseconds (7.9° ± 6.1°). The cut-off values for the presence of dyssynchrony were estimated as SD LVmPA > 27.1 milliseconds (>13.2°), SD RVmPA > 68.7 milliseconds (>33.1°) and LV-RVmPA > 47.3 milliseconds (>22.1°). There was no statistically significant intra-observer or inter-observer variability. Using these cut offs, 9 patients with DCM showed the presence of left intraventricular dyssynchrony, 5 had right intraventricular dyssynchrony and 2 had interventricular dyssynchrony.


ERNA phase analysis offers an objective and reproducible tool to quantify cardiac mechanical synchrony using commercially available software and can be used in routine clinical practice to assess mechanical dyssynchrony.


Equilibrium radionuclide angiography mechanical dyssynchrony ventricular synchrony reproducibility dilated cardiomyopathy 


  1. 1.
    Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, et al. Heart disease and stroke statistics-2011 update: A report from the American Heart Association. Circulation 2011;123:e18-209.PubMedCrossRefGoogle Scholar
  2. 2.
    Cazeau S, Leclercq C, Lavergene T, Walker S, Varma C, Linde C, et al. Effects of multisite biventricular pacing in patients with heart failure and interventricular conduction delay. N Engl J Med 2001;344:873-80.PubMedCrossRefGoogle Scholar
  3. 3.
    Cleland JGF, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, et al. For the cardiac resynchronization-heart failure (CARE-HF) study investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 2005;352:1539-49.PubMedCrossRefGoogle Scholar
  4. 4.
    Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass D, De Marco T, et al. For the comparison of medical therapy, pacing and defibrillation in heart failure (COMPANION) investigators. Cardiac resynchronization therapy with or without an implantable defibrillator in advanced heart failure. N Engl J Med 2004;350:2140-50.PubMedCrossRefGoogle Scholar
  5. 5.
    Epstein AE, DiMarco JP, Ellenbogen KA, et al. ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices): Developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. Circulation 2008;117:e350-408.PubMedCrossRefGoogle Scholar
  6. 6.
    Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med 2002;346:1845-53.PubMedCrossRefGoogle Scholar
  7. 7.
    Young JB, Abraham WT, Smith AL, et al. Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: The MIRACLE ICD trial. JAMA 2003;289:2685-94.PubMedCrossRefGoogle Scholar
  8. 8.
    Bax JJ, Van der Wall EE, Schalij MJ. Cardiac resynchronization therapy for heart failure. N Engl J Med 2002;347:1803-4.PubMedCrossRefGoogle Scholar
  9. 9.
    Bax JJ, Bleeker GB, Marwick TH, et al. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol 2004;44:1834-40.PubMedCrossRefGoogle Scholar
  10. 10.
    Leclercq C, Faris O, Tunin R, et al. Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block. Circulation 2002;106:1760-3.PubMedCrossRefGoogle Scholar
  11. 11.
    Achilli A, Sassara M, Ficili S, et al. Long-term effectiveness of cardiac resynchronization therapy in patients with refractory heart failure and “narrow” QRS. J Am Coll Cardiol 2003;42:2117-24.PubMedCrossRefGoogle Scholar
  12. 12.
    Mollema SA, Bleeker GB, Van der Wall EE, et al. Usefulness of QRS duration to predict response to cardiac resynchronization therapy in patients with end-stage heart failure. Am J Cardiol 2007;100:1665-70.PubMedCrossRefGoogle Scholar
  13. 13.
    AlJaroudi W, Koneru J, Heo J, Iskandrian AE. Impact of ischemia on left ventricular dyssynchrony by phase analysis of gated single photon emission computed tomography myocardial perfusion imaging. J Nucl Cardiol 2011;18:36-42.PubMedCrossRefGoogle Scholar
  14. 14.
    Pitzalis MV, Iacoviello M, Romito R, Massari F, Rizzon B, Luzzi G, et al. Cardiac resynchronization therapy tailored by echocardiographic evaluation of ventricular asynchrony. J Am Coll Cardiol 2002;40:1615-22.PubMedCrossRefGoogle Scholar
  15. 15.
    Yu CM, Fung JW, Zhang Q, Chan CK, Chan YS, Lin H, et al. Tissue Doppler imaging is superior to strain rate imaging and postsystolic shortening on the prediction of reverse remodeling in both ischemic and nonischemic heart failure after cardiac resynchronization therapy. Circulation 2004;110:66-73.PubMedCrossRefGoogle Scholar
  16. 16.
    Koos R, Neizel M, Schummers G, Krombach GA, Stanzel S, Gunther RW, et al. Feasibility and initial experience of assessment of mechanical dyssynchrony using cardiovascular magnetic resonance and semi-automatic border detection. J Cardiovasc Magn Reson 2008;10:49.PubMedCrossRefGoogle Scholar
  17. 17.
    Kerwin WF, Botvinick EH, O’Connell JW, et al. Ventricular contraction abnormalities in dilated cardiomyopathy: Effect of biventricular pacing to correct interventricular dyssynchrony. J Am Coll Cardiol 2000;35:1221-7.PubMedCrossRefGoogle Scholar
  18. 18.
    Chen J, Garcia EV, Folks RD, Cooke CD, Faber TL, Tauxe EL, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: Development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol 2005;12:687-95.PubMedCrossRefGoogle Scholar
  19. 19.
    Chen J, Henneman MM, Trimble MA, Bax JJ, Borges-Neto S, Iskandrian AE, et al. Assessment of left ventricular mechanical dyssynchrony by phase analysis of ECG-gated SPECT myocardial perfusion imaging. J Nucl Cardiol 2008;15:127-36.PubMedCrossRefGoogle Scholar
  20. 20.
    Sutter JD, Murilloeclercq JM, Bax JJ, Yu CM, Gorcsan J, Sutton MJ, et al. Results of the predictors of response to CRT (PROSPECT) trial. Circulation 2008;117:2608-16.PubMedCrossRefGoogle Scholar
  21. 21.
    Botvinick EH. Scintigraphic blood pool and phase image analysis: The optimal tool for the evaluation of resynchronization therapy. J Nucl Cardiol 2003;10:424-8.PubMedCrossRefGoogle Scholar
  22. 22.
    Fauchier L, Marie O, Casset-Senon D, Babuty D, Cosnay P, Fauchier JP. Interventricular and intraventricular dyssynchrony in idiopathic dilated cardiomyopathy: A prognostic study with Fourier phase analysis of radionuclide angioscintigraphy. J Am Coll Cardiol 2002;40:2022-30.PubMedCrossRefGoogle Scholar
  23. 23.
    Toussaint JF, Lavergne T, Kerrou K, et al. Basal asynchrony and resynchronization with biventricular pacing predict long-term improvement of LV function in heart failure patients. Pacing Clin Electrophysiol 2003;26:1815-23.PubMedCrossRefGoogle Scholar
  24. 24.
    Vallejo E, Jiménez L, Rodríguez G, Roffe F, Bialostozky D. Evaluation of ventricular synchrony with equilibrium radionuclide angiography: Assessment of variability and accuracy. Arch Med Res 2010;41:83-91.PubMedCrossRefGoogle Scholar
  25. 25.
    Marcassa C, Campini R, Verna E, Ceriani L, Giannuzzi P. Assessment of cardiac asynchrony by radionuclide phase analysis: Correlation with ventricular function in patients with narrow or prolonged QRS interval. Eur J Heart Fail 2007;9:484-90.PubMedCrossRefGoogle Scholar
  26. 26.
    Fauchier L, Marie O, Casset-Senon D, Babuty D, Cosnay P, Fauchier JP. Reliability of QRS duration and morphology on surface electrocardiogram to identify ventricular dyssynchrony in patients with idiopathic dilated cardiomyopathy. Am J Cardiol 2003;92:341-4.PubMedCrossRefGoogle Scholar
  27. 27.
    Botvinick EH, Frais M, O’Connell JW, et al. Phase image evaluation of patients with ventricular pre-excitation syndromes. J Am Coll Cardiol 1984;3:799-814.PubMedCrossRefGoogle Scholar
  28. 28.
    Botvinick EH, Dunn R, Frais M, et al. The phase image: Its relationship to patterns of contraction and conduction. Circulation 1982;65:551-60.PubMedCrossRefGoogle Scholar
  29. 29.
    Strauss HW, Zaret BL, Hurley PJ, et al. A scintiphotographic method for measuring left ventricular ejection fraction in man without cardiac catheterization. Am J Cardiol 1971;28:575-80.PubMedCrossRefGoogle Scholar
  30. 30.
    O’Connell JW, Schreck C, Moles M, Badwar N, DeMarco T, Olgin J, et al. A unique method by which to quantitate synchrony with equilibrium radionuclide angiography. J Nucl Cardiol 2005;12:441-50.PubMedCrossRefGoogle Scholar
  31. 31.
    Wendt RE III, Murphy PH, Clark JW Jr, Burdine JA. Interpretation of multigated Fourier functional images. J Nucl Med 1982;23:715-24.PubMedGoogle Scholar
  32. 32.
    Mancini GB, Peck WW, Slutsky RA. Analysis of phase-angle histograms from equilibrium radionuclide studies: Correlation with semiquantitative grading of wall motion. Am J Cardiol 1985;55:535-40.PubMedCrossRefGoogle Scholar
  33. 33.
    Le Guludec D, Slama SM, Frank R, Faraggi M, Grimon G, Bourguignon HM, et al. Evaluation of radionuclide angiography in diagnosis of arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol 1995;26:1476-83.PubMedCrossRefGoogle Scholar
  34. 34.
    Eder V, Fauchier L, Courtehoux M, Bonnet P, Babuty D. Segmental wall motion abnormality analyzed by equilibrium radionuclide angiography and improvement in ventricular function by cardiac resynchronization therapy. Pacing Clin Electrophysiol 2007;30:S58-61.PubMedCrossRefGoogle Scholar
  35. 35.
    Burri H, Sunthorn H, Somsen A, Zaza S, Fleury E, Shah D, et al. Optimizing sequential biventricular pacing using radionuclide ventriculography. Heart Rhythm 2005;2:960-5.PubMedCrossRefGoogle Scholar
  36. 36.
    Botvinick E, Davis J, Dae M, O’Connell J, Schechtmann N, Abbott J, et al. Localization of ventricular tachycardia exit site and subsequent contraction sequence and functional effects with bedside radionuclide angiography. J Am Coll Cardiol Imaging 2008;1:605-13.CrossRefGoogle Scholar
  37. 37.
    Sharma G, Singh H, Patel C, Ray A, Sharma P, Bahl VK. Short term effect of right ventricular outflow tract compared with conventional apical pacing on left ventricular function and synchrony in patients with normal baseline cardiac function (Abstract). Pacing Clin Electrophysiol 2011;34:1342.Google Scholar
  38. 38.
    Muxí A, Paredes P, Mont L, Setoain FJ, Duch J, Fuertes S, et al. Left ventricular function and visual phase analysis with equilibrium radionuclide angiography in patients with biventricular device. Eur J Nucl Med Mol Imaging 2008;35:912-21.PubMedCrossRefGoogle Scholar
  39. 39.
    Rosenquist M, Isaaz K, Botvinick EH, et al. Relative importance of activation sequence compared to AV synchrony in left ventricular function. Am J Cardiol 1991;67:148-55.CrossRefGoogle Scholar
  40. 40.
    Somsen GA, Verberne HJ, Burri H, Ratib O, Righetti A. Ventricular mechanical dyssynchrony and resynchronization therapy in heart failure: A new indication for Fourier analysis of gated blood-pool radionuclide ventriculography. Nucl Med Commun 2006;27:105-12.PubMedCrossRefGoogle Scholar
  41. 41.
    Port SC. Timing is everything. J Nucl Cardiol 2008;15:10-2.PubMedCrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2013

Authors and Affiliations

  • Harmandeep Singh
    • 1
  • Abhinav Singhal
    • 1
  • Punit Sharma
    • 1
  • Chetan D. Patel
    • 1
  • Sandeep Seth
    • 2
  • Arun Malhotra
    • 1
  1. 1.Department of Nuclear MedicineAll India Institute of Medical SciencesNew DelhiIndia
  2. 2.Department of CardiologyAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations