Journal of Nuclear Cardiology

, Volume 20, Issue 3, pp 465–472 | Cite as

CT vs SPECT: CT is the first-line test for the diagnosis and prognosis of stable coronary artery disease

  • Ahmed Aljizeeri
  • Myra S. Cocker
  • Benjamin J. W. Chow
Controversies in Nuclear Cardiology

Abstract

Non-invasive cardiac imaging is pivotal in the diagnosis and prognosis of patients with stable CAD. Nuclear SPECT, PET, stress echocardiography and more recently cardiac magnetic resonance imaging have been utilized with excellent diagnostic accuracy. However, along with their inherent individual limitations, most modalities detect ischemia but lack the ability to define coronary anatomy or evaluate for subclinical atherosclerosis. A modality that not only accurately diagnoses obstructive CAD and also facilitates early identification of non-obstructive CAD may be of interest because it may allow for earlier aggressive risk factor modification and primary prevention. Cardiac computerized tomographic angiography (CCTA) has the potential to accurately detect or exclude luminal stenosis, as well as identify and quantify subclinical atherosclerosis in the absence if luminal narrowing. However CCTA, being a relatively a new modality, has less supporting evidence when compared to more mature modalities such as SPECT. Therefore, the question that begs to be addressed is whether CCTA can be utilized as a first line test in establishing the diagnosis and prognosis of CAD.

Keywords

Computed tomography (CT) SPECT stable CAD 

Notes

Disclosures

Benjamin Chow receives research support from GE Healthcare and education support from TeraRecon Inc.

References

  1. 1.
    Mathers CD, Boerma T. Ma Fat D. Global and regional causes of death. Br Med Bull. 2009;92:7-32.PubMedCrossRefGoogle Scholar
  2. 2.
    Noto TJ Jr, Johnson LW, Krone R, et al. Cardiac catheterization 1990: a report of the Registry of the Society for Cardiac Angiography and Interventions (SCA&I). Cathet Cardiovasc Diagn. 1991;24(2):75-83.PubMedCrossRefGoogle Scholar
  3. 3.
    Merrill CE EA. Procedures in U.S. hospitals. 2005; www.ahrq.gov/data/hcup/factbk7/factbk7b.htm. Accessed December, 2012.
  4. 4.
    Patel MR, Peterson ED, Dai D, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362(10):886-95.PubMedCrossRefGoogle Scholar
  5. 5.
    Fleischmann KE, Hunink MG, Kuntz KM, Douglas PS. Exercise echocardiography or exercise SPECT imaging? A meta-analysis of diagnostic test performance. JAMA. 1998;280(10):913-20.PubMedCrossRefGoogle Scholar
  6. 6.
    Beller GA, Zaret BL. Contributions of nuclear cardiology to diagnosis and prognosis of patients with coronary artery disease. Circulation. 2000;101(12):1465-78.PubMedCrossRefGoogle Scholar
  7. 7.
    Lee TH, Boucher CA. Clinical practice. Noninvasive tests in patients with stable coronary artery disease. N Engl J Med. 2001;344(24):1840-5.PubMedCrossRefGoogle Scholar
  8. 8.
    Al-Shehri H. Cardiac CT, MR, SPECT, ECHO, and PET: What test, when? www.appliedradiology.com. 2011;40:13-22.
  9. 9.
    Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990 s. Nature. 1993;362(6423):801-9.PubMedCrossRefGoogle Scholar
  10. 10.
    Schoenhagen P, Tuzcu EM, Stillman AE, et al. Non-invasive assessment of plaque morphology and remodeling in mildly stenotic coronary segments: comparison of 16-slice computed tomography and intravascular ultrasound. Coron Artery Dis. 2003;14(6):459-62.PubMedCrossRefGoogle Scholar
  11. 11.
    Achenbach S, Moselewski F, Ropers D, et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation. 2004;109(1):14-7.PubMedCrossRefGoogle Scholar
  12. 12.
    Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52(21):1724-32.PubMedCrossRefGoogle Scholar
  13. 13.
    Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359(22):2324-36.PubMedCrossRefGoogle Scholar
  14. 14.
    Hamon M, Biondi-Zoccai GG, Malagutti P, Agostoni P, Morello R, Valgimigli M. Diagnostic performance of multislice spiral computed tomography of coronary arteries as compared with conventional invasive coronary angiography: a meta-analysis. J Am Coll Cardiol. 2006;48(9):1896-910.PubMedCrossRefGoogle Scholar
  15. 15.
    Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R, et al. Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology. 2007;244(2):419-28.PubMedCrossRefGoogle Scholar
  16. 16.
    Meijboom WB, Van Mieghem CA, van Pelt N, et al. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography vs conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol. 2008;52(8):636-43.PubMedCrossRefGoogle Scholar
  17. 17.
    Taylor AJ, Cerqueira M, Hodgson JM, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol. 2010;56(22):1864-94.PubMedCrossRefGoogle Scholar
  18. 18.
    Mark DB, Berman DS, Budoff MJ, et al. ACCF/ACR/AHA/NASCI/SAIP/SCAI/SCCT 2010 expert consensus document on coronary computed tomographic angiography: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. Circulation. 2010;121(22):2509-43.PubMedCrossRefGoogle Scholar
  19. 19.
    Stein PD, Yaekoub AY, Matta F, Sostman HD. 64-slice CT for diagnosis of coronary artery disease: a systematic review. Am J Med. 2008;121(8):715-25.PubMedCrossRefGoogle Scholar
  20. 20.
    Meijboom WB, Meijs MF, Schuijf JD, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52(25):2135-44.PubMedCrossRefGoogle Scholar
  21. 21.
    Chow BJ, Freeman MR, Bowen JM, et al. Ontario multidetector computed tomographic coronary angiography study: field evaluation of diagnostic accuracy. Arch Intern Med. 2011;171(11):1021-9.PubMedCrossRefGoogle Scholar
  22. 22.
    Meijboom WB, Mollet NR, Van Mieghem CA, et al. Pre-operative computed tomography coronary angiography to detect significant coronary artery disease in patients referred for cardiac valve surgery. J Am Coll Cardiol. 2006;48(8):1658-65.PubMedCrossRefGoogle Scholar
  23. 23.
    He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med. 2001;161(7):996-1002.PubMedCrossRefGoogle Scholar
  24. 24.
    Baldasseroni S, Opasich C, Gorini M, et al. Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: a report from the Italian network on congestive heart failure. Am Heart J. 2002;143(3):398-405.PubMedCrossRefGoogle Scholar
  25. 25.
    Andreini D, Pontone G, Pepi M, et al. Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2007;49(20):2044-50.PubMedCrossRefGoogle Scholar
  26. 26.
    Ghostine S, Caussin C, Habis M, et al. Non-invasive diagnosis of ischaemic heart failure using 64-slice computed tomography. Eur Heart J. 2008;29(17):2133-40.PubMedCrossRefGoogle Scholar
  27. 27.
    Angelini P. Coronary artery anomalies: an entity in search of an identity. Circulation. 2007;115(10):1296-305.PubMedGoogle Scholar
  28. 28.
    Taylor AJ, Rogan KM, Virmani R. Sudden cardiac death associated with isolated congenital coronary artery anomalies. J Am Coll Cardiol. 1992;20(3):640-7.PubMedCrossRefGoogle Scholar
  29. 29.
    Cheitlin MD, De Castro CM, McAllister HA. Sudden death as a complication of anomalous left coronary origin from the anterior sinus of Valsalva, A not-so-minor congenital anomaly. Circulation. 1974;50(4):780-7.PubMedCrossRefGoogle Scholar
  30. 30.
    Datta J, White CS, Gilkeson RC, et al. Anomalous coronary arteries in adults: depiction at multi-detector row CT angiography. Radiology. 2005;235(3):812-8.PubMedCrossRefGoogle Scholar
  31. 31.
    Ropers D, Moshage W, Daniel WG, Jessl J, Gottwik M, Achenbach S. Visualization of coronary artery anomalies and their anatomic course by contrast-enhanced electron beam tomography and three-dimensional reconstruction. Am J Cardiol. 2001;87(2):193-7.PubMedCrossRefGoogle Scholar
  32. 32.
    Meyer TS, Martinoff S, Hadamitzky M, et al. Improved noninvasive assessment of coronary artery bypass grafts with 64-slice computed tomographic angiography in an unselected patient population. J Am Coll Cardiol. 2007;49(9):946-50.PubMedCrossRefGoogle Scholar
  33. 33.
    Ropers D, Pohle FK, Kuettner A, et al. Diagnostic accuracy of noninvasive coronary angiography in patients after bypass surgery using 64-slice spiral computed tomography with 330-ms gantry rotation. Circulation. 2006;114(22):2334-41. quiz 2334.PubMedCrossRefGoogle Scholar
  34. 34.
    Andreini D, Pontone G, Mushtaq S, Pepi M, Bartorelli AL. Multidetector computed tomography coronary angiography for the assessment of coronary in-stent restenosis. Am J Cardiol. 2010;105(5):645-55.PubMedCrossRefGoogle Scholar
  35. 35.
    Pugliese F, Weustink AC, Van Mieghem C, et al. Dual source coronary computed tomography angiography for detecting in-stent restenosis. Heart. 2008;94(7):848-54.PubMedCrossRefGoogle Scholar
  36. 36.
    Carbone I, Francone M, Algeri E, et al. Non-invasive evaluation of coronary artery stent patency with retrospectively ECG-gated 64-slice CT angiography. Eur Radiol. 2008;18(2):234-43.PubMedCrossRefGoogle Scholar
  37. 37.
    Oncel D, Oncel G, Tastan A, Tamci B. Evaluation of coronary stent patency and in-stent restenosis with dual-source CT coronary angiography without heart rate control. AJR Am J Roentgenol. 2008;191(1):56-63.PubMedCrossRefGoogle Scholar
  38. 38.
    Andreini D, Pontone G, Bartorelli AL, et al. Comparison of feasibility and diagnostic accuracy of 64-slice multidetector computed tomographic coronary angiography vs invasive coronary angiography vs intravascular ultrasound for evaluation of in-stent restenosis. Am J Cardiol. 2009;103(10):1349-58.PubMedCrossRefGoogle Scholar
  39. 39.
    Rixe J, Achenbach S, Ropers D, et al. Assessment of coronary artery stent restenosis by 64-slice multi-detector computed tomography. Eur Heart J. 2006;27(21):2567-72.PubMedCrossRefGoogle Scholar
  40. 40.
    Sheth T, Dodd JD, Hoffmann U, et al. Coronary stent assessability by 64 slice multi-detector computed tomography. Catheter Cardiovasc Interv. 2007;69(7):933-8.PubMedCrossRefGoogle Scholar
  41. 41.
    Van Mieghem CA, Cademartiri F, Mollet NR, et al. Multislice spiral computed tomography for the evaluation of stent patency after left main coronary artery stenting: a comparison with conventional coronary angiography and intravascular ultrasound. Circulation. 2006;114(7):645-53.PubMedCrossRefGoogle Scholar
  42. 42.
    Veselka J, Cadova P, Tomasov P, Theodor A, Zemanek D. Dual-source CT angiography for detection and quantification of in-stent restenosis in the left main coronary artery: comparison with intracoronary ultrasound and coronary angiography. J Invasive Cardiol. 2011;23(11):460-4.PubMedGoogle Scholar
  43. 43.
    Rocha-Filho JA, Blankstein R, Shturman LD, et al. Incremental value of adenosine-induced stress myocardial perfusion imaging with dual-source CT at cardiac CT angiography. Radiology. 2010;254(2):410-9.PubMedCrossRefGoogle Scholar
  44. 44.
    Chow BJ, Kass M, Gagne O, et al. Can differences in corrected coronary opacification measured with computed tomography predict resting coronary artery flow? J Am Coll Cardiol. 2011;57(11):1280-8.PubMedCrossRefGoogle Scholar
  45. 45.
    Koo BK, Erglis A, Doh JH, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol. 2011;58(19):1989-97.PubMedCrossRefGoogle Scholar
  46. 46.
    Min JK, Leipsic J, Pencina MJ, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308(12):1237-45.PubMedCrossRefGoogle Scholar
  47. 47.
    Fryback DG, Thornbury JR. The efficacy of diagnostic imaging. Med Decis Making. Apr-Jun. 1991;11(2):88-94.CrossRefGoogle Scholar
  48. 48.
    Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA. 2004;291(2):210-5.PubMedCrossRefGoogle Scholar
  49. 49.
    Taylor AJ, Bindeman J, Feuerstein I, Cao F, Brazaitis M, O’Malley PG. Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project. J Am Coll Cardiol. 2005;46(5):807-14.PubMedCrossRefGoogle Scholar
  50. 50.
    Budoff MJ, Shaw LJ, Liu ST, et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol. 2007;49(18):1860-70.PubMedCrossRefGoogle Scholar
  51. 51.
    Kondos GT, Hoff JA, Sevrukov A, et al. Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation. 2003;107(20):2571-6.PubMedCrossRefGoogle Scholar
  52. 52.
    Pletcher MJ, Tice JA, Pignone M, Browner WS. Using the coronary artery calcium score to predict coronary heart disease events: a systematic review and meta-analysis. Arch Intern Med. 2004;164(12):1285-92.PubMedCrossRefGoogle Scholar
  53. 53.
    Chow BJ, Small G, Yam Y, et al. Incremental prognostic value of cardiac computed tomography in coronary artery disease using CONFIRM: COroNary computed tomography angiography evaluation for clinical outcomes: an InteRnational Multicenter registry. Circ Cardiovasc Imaging. 2011;4(5):463-72.PubMedCrossRefGoogle Scholar
  54. 54.
    Chow BJ, Wells GA, Chen L, et al. Prognostic value of 64-slice cardiac computed tomography severity of coronary artery disease, coronary atherosclerosis, and left ventricular ejection fraction. J Am Coll Cardiol. 2010;55(10):1017-28.PubMedCrossRefGoogle Scholar
  55. 55.
    Hulten EA, Carbonaro S, Petrillo SP, Mitchell JD, Villines TC. Prognostic value of cardiac computed tomography angiography: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;57(10):1237-47.PubMedCrossRefGoogle Scholar
  56. 56.
    Andreini D, Pontone G, Mushtaq S, et al. A long-term prognostic value of coronary CT angiography in suspected coronary artery disease. JACC Cardiovasc Imaging. 2012;5(7):690-701.PubMedCrossRefGoogle Scholar
  57. 57.
    Small GR, Yam Y, Chen L, et al. Prognostic assessment of coronary artery bypass patients with 64-slice computed tomography angiography: anatomical information is incremental to clinical risk prediction. J Am Coll Cardiol. 2011;58(23):2389-95.PubMedCrossRefGoogle Scholar
  58. 58.
    Chow BJ, Ahmed O, Small G, et al. Prognostic value of CT angiography in coronary bypass patients. JACC Cardiovasc Imaging. 2011;4(5):496-502.PubMedCrossRefGoogle Scholar
  59. 59.
    Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97(18):1837-47.PubMedCrossRefGoogle Scholar
  60. 60.
    Pen AY, Y Chin L. Discordance between Framingham Risk Score and atherosclersois plaque burden. Eur Heart J [Epub ahead of print].Google Scholar
  61. 61.
    Lessick J, Dragu R, Mutlak D, et al. Is functional improvement after myocardial infarction predicted with myocardial enhancement patterns at multidetector CT? Radiology. 2007;244(3):736-44.PubMedCrossRefGoogle Scholar
  62. 62.
    Dwivedi G, Dowsley TF, Chow BJ. Assessment of cardiac computed tomography-myocardial perfusion imaging - promise and challenges. Circ J. 2012;76(3):544-52.PubMedCrossRefGoogle Scholar
  63. 63.
    Shmilovich H, Cheng VY, Tamarappoo BK, et al. Vulnerable plaque features on coronary CT angiography as markers of inducible regional myocardial hypoperfusion from severe coronary artery stenoses. Atherosclerosis. 2011;219(2):588-95.PubMedCrossRefGoogle Scholar
  64. 64.
    Pundziute G, Schuijf JD, Jukema JW, et al. Evaluation of plaque characteristics in acute coronary syndromes: non-invasive assessment with multi-slice computed tomography and invasive evaluation with intravascular ultrasound radiofrequency data analysis. Eur Heart J. 2008;29(19):2373-81.PubMedCrossRefGoogle Scholar
  65. 65.
    Min JK, Gilmore A, Budoff MJ, Berman DS, O’Day K. Cost-effectiveness of coronary CT angiography vs myocardial perfusion SPECT for evaluation of patients with chest pain and no known coronary artery disease. Radiology. 2010;254(3):801-8.PubMedCrossRefGoogle Scholar
  66. 66.
    Tandon V, Hall D, Yam Y, et al. Rates of downstream invasive coronary angiography and revascularization: computed tomographic coronary angiography vs. Tc-99 m single photon emission computed tomography. Eur Heart J. 2012;33(6):776-82.PubMedCrossRefGoogle Scholar
  67. 67.
    Chow BJ, Abraham A, Wells GA, et al. Diagnostic accuracy and impact of computed tomographic coronary angiography on utilization of invasive coronary angiography. Circ Cardiovasc Imaging. 2009;2(1):16-23.PubMedCrossRefGoogle Scholar
  68. 68.
    Hausleiter J, Meyer T, Hermann F, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. 2009;301(5):500-7.PubMedCrossRefGoogle Scholar
  69. 69.
    Hausleiter J, Meyer T, Hadamitzky M, et al. Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation. 2006;113(10):1305-10.PubMedCrossRefGoogle Scholar
  70. 70.
    Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation. 2007;116(11):1290-305.PubMedCrossRefGoogle Scholar
  71. 71.
    Morin RL, Gerber TC, McCollough CH. Radiation dose in computed tomography of the heart. Circulation. 2003;107(6):917-22.PubMedCrossRefGoogle Scholar
  72. 72.
    Earls JP, Berman EL, Urban BA, et al. Prospectively gated transverse coronary CT angiography vs retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology. 2008;246(3):742-53.PubMedCrossRefGoogle Scholar
  73. 73.
    Small GR, Chow BJ, Ruddy TD. Low-dose cardiac imaging: reducing exposure but not accuracy. Expert Rev Cardiovasc Ther. 2012;10(1):89-104.PubMedCrossRefGoogle Scholar
  74. 74.
    Achenbach S, Marwan M, Ropers D, et al. Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J. 2010;31(3):340-6.PubMedCrossRefGoogle Scholar
  75. 75.
    Achenbach S, Ropers D, Kuettner A, et al. Contrast-enhanced coronary artery visualization by dual-source computed tomography—initial experience. Eur J Radiol. 2006;57(3):331-5.PubMedCrossRefGoogle Scholar
  76. 76.
    Brodoefel H, Burgstahler C, Tsiflikas I, et al. Dual-source CT: effect of heart rate, heart rate variability, and calcification on image quality and diagnostic accuracy. Radiology. 2008;247(2):346-55.PubMedCrossRefGoogle Scholar
  77. 77.
    Coles DR, Smail MA, Negus IS, et al. Comparison of radiation doses from multislice computed tomography coronary angiography and conventional diagnostic angiography. J Am Coll Cardiol. 2006;47(9):1840-5.PubMedCrossRefGoogle Scholar
  78. 78.
    Kaufmann PA, Knuuti J. Ionizing radiation risks of cardiac imaging: estimates of the immeasurable. Eur Heart J. 2011;32(3):269-71.PubMedCrossRefGoogle Scholar
  79. 79.
    Gerber TC, Carr JJ, Arai AE, et al. Ionizing radiation in cardiac imaging: a science advisory from the American Heart Association Committee on Cardiac Imaging of the Council on Clinical Cardiology and Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention. Circulation. 2009;119(7):1056-65.PubMedCrossRefGoogle Scholar
  80. 80.
    Vijayalakshmi K, Kelly D, Chapple CL, et al. Cardiac catheterisation: radiation doses and lifetime risk of malignancy. Heart. 2007;93(3):370-1.PubMedCrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2013

Authors and Affiliations

  • Ahmed Aljizeeri
    • 1
  • Myra S. Cocker
    • 1
  • Benjamin J. W. Chow
    • 1
    • 2
  1. 1.Department of Medicine (Cardiology)University of Ottawa Heart InstituteOttawaCanada
  2. 2.Department of RadiologyUniversity of OttawaOttawaCanada

Personalised recommendations