Advertisement

Journal of Nuclear Cardiology

, Volume 19, Issue 5, pp 997–1006 | Cite as

Short-term repeatability of resting myocardial blood flow measurements using rubidium-82 PET imaging

  • Matthew Efseaff
  • Ran Klein
  • Maria C. Ziadi
  • Rob S. Beanlands
  • Robert A. deKemp
Original Article

Abstract

Background

Rubidium-82 (82Rb) PET imaging has been proposed for routine myocardial blood flow (MBF) quantification. However, few studies have investigated the test-retest repeatability of this method. The aim of this study was to optimize same-day repeatability of rest MBF imaging with a highly automated analysis program (FlowQuant) using image-derived input functions and dual spillover corrections (SOC).

Methods

Test-retest repeatability of resting left-ventricle (LV) MBF was measured in patients (n = 27) with suspected coronary artery disease (CAD) and healthy volunteers (n = 9). The effects of scan-time, reconstruction, and quantification methods were assessed with correlation and Bland-Altman repeatability coefficients.

Results

Factors affecting rest MBF included gender, suspected CAD, and SOC (P < .001). Significant test-retest correlations were found using all analysis methods tested (r > 0.79). The best repeatability coefficient for same-day MBF was 0.20 mL/minute/g using a 6-minute scan-time, iterative reconstruction, SOC, resting rate-pressure-product (RPP) adjustment, and left atrium input function. This protocol was significantly less variable than standard protocols using filtered back-projection reconstruction, longer scan-time, no SOC, or LV input function.

Conclusion

Absolute MBF can be measured with good repeatability using FlowQuant analysis of 82Rb PET scans with a 6-minute scan time, iterative reconstruction, dual SOC, RPP-adjustment, and an image-derived input function in the left atrium cavity.

Keywords

Rubidium-82 PET myocardial blood flow myocardial perfusion imaging test-retest repeatability 

Notes

Acknowledgments

The authors would like to thank Judy Etele for enrolling the study subjects, and May Aung and Kimberly Gardner for performing the PET scans. This study was supported by an Imaging in Cardiovascular Therapeutics grant from the Ontario Research Fund (RE02038), and a Molecular Function and Imaging Program grant from the Heart and Stroke Foundation of Ontario (PRG6242). Matthew Efseaff was supported in part by an Ontario Graduate Scholarship.

Conflict of interest

Robert deKemp, Ran Klein, and Rob Beanlands are consultants for Jubilant DRAXimage. Robert deKemp and Ran Klein share revenues from the sale of FlowQuant.

References

  1. 1.
    Ziadi M, Beanlands R. The clinical utility of assessing myocardial blood flow using positron emission tomography. J Nucl Cardiol 2010;17:571-81.PubMedCrossRefGoogle Scholar
  2. 2.
    Ziadi M, deKemp R, Williams K, Guo A, Renaud J, Chow B, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Med 2012;19(4):670–80.Google Scholar
  3. 3.
    Parkash R, deKemp R, Ruddy T, Kitsikis A, Hart R, Beauschene L, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol 2004;11:440-9.PubMedCrossRefGoogle Scholar
  4. 4.
    Ziadi MC, deKemp RA, Williams KA, Guo A, Chow BJ, Renaud JM, et al. Imparied myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol 2011;58:740-8.PubMedCrossRefGoogle Scholar
  5. 5.
    El Fakhri G, Kardan A, Sitek A, Dorbala S, Abi-Hatem N, Lahoud Y, et al. Reproducibility and accuracy of quantitative myocardial blood flow assessment with 82Rb PET: Comparison with 13N-ammonia PET. J Nucl Cardiol 2009;50:1062-71.Google Scholar
  6. 6.
    Lautamäki R, George R, Kitagawa K, Higuchi T, Merrill J, Voicu C, et al. Rubidium-82 PET-CT for quantitative assessment of myocardial blood flow: Validation in a canine model of coronary artery stenosis. Eur J Nucl Med Mol Imaging 2009;36:576-86.PubMedCrossRefGoogle Scholar
  7. 7.
    Klein R, Renaud J, Ziadi M, Thorn S, Adler A, Beanlands R, et al. Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 and a highly automated analysis program. J Nucl Cardiol 2010;17:600-16.PubMedCrossRefGoogle Scholar
  8. 8.
    Schindler T, Zhang X, Prior J, Dadenas J, Dahlbom M, Sayre J, et al. Assessment of intra- and interobserver reproducibility of rest and cold pressor test-stimulated myocardial blood flow with 13N-ammonia and PET. Eur J Nucl Med Mol Imaging 2007;34:1178-88.PubMedCrossRefGoogle Scholar
  9. 9.
    Kaufmann P, Gnecchi-Ruscone T, Yap J, Rimoldi O, Camici P. Assessment of the reproducibility of baseline and hyperemic myocardial blood flow measurements with 15O-labeled water and PET. J Nucl Med 1999;40:1848-56.PubMedGoogle Scholar
  10. 10.
    Manabe O, Yoshinaga K, Katoh C, Naya M, deKemp R, Tamaki N. Repeatability of rest and hyperemic myocardial blood flow measurements with 82Rb dynamic PET. J Nucl Med 2009;50:68-71.PubMedCrossRefGoogle Scholar
  11. 11.
    Klein R, Adler A, Beanlands R, deKemp R. Precision-controlled elution of a 82Sr/82Rb generator for cardiac perfusion imaging with positron emission tomography. Phys Med Biol 2007;52:659-73.PubMedCrossRefGoogle Scholar
  12. 12.
    Ruby-Fill™ Product Monograph. Rubidium Rb82 generator diagnostic radiopharmaceutical (myocardial imaging). Kirkland: Jubilant DraxImage Inc.Google Scholar
  13. 13.
    Lortie M, Beanlands R, Yoshinaga K, Klein R, DaSilva J, deKemp R. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34:1765-74.PubMedCrossRefGoogle Scholar
  14. 14.
    Renkin E. Transport of potassium-42 from blood to tissue isolated mammalian skeletal muscles. Am J Physiol 1959;197:1205-10.PubMedGoogle Scholar
  15. 15.
    Crone C. Permeability of capillaries in various organs as determined by use of the indicator diffusion method. Acta Physiol Scand 1963;8:292-305.CrossRefGoogle Scholar
  16. 16.
    Klein R, Katoh C, Yoshinaga K, Tamaki N, Adler A, Beanlands R, et al. Evaluation of myocardium to blood pool spillover correction in quantification myocardial blood flow with 82Rb PET [Poster]. Montreal: World Molecular Imaging Congress; 2009.Google Scholar
  17. 17.
    Hutchins G, Caraher J, Raylman R. A region of interest strategy for minimizing resolution distortions in quantitative myocardial PET studies. J Nucl Med 1992;3:1243-50.Google Scholar
  18. 18.
    Altman D, Bland J. Measurement in medicine: The analysis of method comparison studies. Statistician 1983:307-17.Google Scholar
  19. 19.
    Slomka P, Alexanderson E, Jácome R, Jiménez M, Romero E, Meave A, et al. Comparison of clinical tools for measurements of regional stress and rest myocardial blood flow assessed with 13N-ammonia PET/CT. J Nucl Med 2012;53:171-81.PubMedCrossRefGoogle Scholar
  20. 20.
    Hove J, Iida H, Kofoed K, Freiberg J, Holm S, Kelbaek H. Left atrial versus left ventricular input function for quantification of the myocardial blood flow with nitrogen-13 ammonia and positron emission tomography. Eur J Nucl Med Mol Imaging 2004;31:71-6.PubMedCrossRefGoogle Scholar
  21. 21.
    deKemp R, Slomka PJ, Declerck J, Pan XB, Klein R, Nakazato R, et al. Reproducible imaging of myocardial flow reserve with rubidium-82 PET—A multicentre multi-vendor comparison study. Eur Heart J 2011;13(suppl):A76. [abstract].Google Scholar
  22. 22.
    Wyss C, Koepfli P, Mikolajczyk K, Burger C, von Schulthess G, Kauffmann P. Bicycle exercise stress in PET for assessment of coronary flow reserve: Repeatability and comparison with adenosine stress. J Nucl Med 2003;44:146-54.PubMedGoogle Scholar
  23. 23.
    Jagathesan R, Kaufmann P, Rosen S, Rimoldi O, Turkeimer F, Foale R, et al. Assessment of the long-term reproducibility of baseline and dobutamine-induced myocardial blood flow in patients with stable coronary artery disease. J Nucl Med 2005;46:212-9.PubMedGoogle Scholar
  24. 24.
    Chareonthaitawee P, Kaufmann P, Rimoldi O, Camici P. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res 2001;50:151-61.PubMedCrossRefGoogle Scholar
  25. 25.
    Nagamachi S, Czernin J, Kim A, Sun K, Bottcher M, Phelps M, et al. Reproducibility of measurements of regional resting and hyperemic myocardial blood flow assessed with PET. J Nucl Med 1995;37:1626-31.Google Scholar
  26. 26.
    deKemp R, Klein R, Lortie M, Beanlands RS. Constant-activity-rate infusions for myocardial blood flow quantification with 82Rb and 3D PET. IEEE Nucl Sci Symp Conf Rec 2006;6:3519-21.Google Scholar

Copyright information

© American Society of Nuclear Cardiology 2012

Authors and Affiliations

  • Matthew Efseaff
    • 1
    • 2
  • Ran Klein
    • 2
  • Maria C. Ziadi
    • 2
  • Rob S. Beanlands
    • 2
  • Robert A. deKemp
    • 1
    • 2
  1. 1.Carleton UniversityOttawaCanada
  2. 2.National Cardiac PET CentreUniversity of Ottawa Heart InstituteOttawaCanada

Personalised recommendations