Journal of Nuclear Cardiology

, Volume 19, Issue 5, pp 1060–1072 | Cite as

Non-invasive quantification of coronary vascular dysfunction for diagnosis and management of coronary artery disease

Review Article

Notes

Acknowledgments

The work was funded in part by Grants from the National Institutes of Health (RC1 HL101060-01, T32 HL094301-01A1).

Disclosures

Dr Murthy owns equity in General Electric. Dr Di Carli receives research funding from Toshiba.

References

  1. 1.
    Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001;285:2486-97.Google Scholar
  2. 2.
    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 2003;42:1206-52.PubMedGoogle Scholar
  3. 3.
    Smith SC, Benjamin EJ, Bonow RO, Braun LT, Creager MA, Franklin BA, et al. AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update. Circulation 2011;124:2458-73.PubMedGoogle Scholar
  4. 4.
    Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2012 update: A report from the American Heart Association. Circulation 2012;125:e2-220.PubMedGoogle Scholar
  5. 5.
    Ford ES, Ajani UA, Croft JB, Critchley JA, Labarthe DR, Kottke TE, et al. Explaining the decrease in US deaths from coronary disease, 1980-2000. N Engl J Med 2007;356:2388-98.PubMedGoogle Scholar
  6. 6.
    Gibbons RJ, Balady GJ, Timothy Bricker J, Chaitman BR, Fletcher GF, Froelicher VF, et al. ACC/AHA 2002 guideline update for exercise testing: Summary article: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (committee to update the 1997 exercise testing guidelines). Circulation 2002;106:1883-92.PubMedGoogle Scholar
  7. 7.
    Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E, et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: A meta-analysis. J Am Coll Cardiol 2012;59:1719-28.PubMedGoogle Scholar
  8. 8.
    Cerqueira MD, Allman KC, Ficaro EP, Hansen CL, Nichols KJ, Thompson RC, et al. Recommendations for reducing radiation exposure in myocardial perfusion imaging. J Nucl Cardiol 2010;17:709-18.PubMedGoogle Scholar
  9. 9.
    Salerno M, Beller GA. Noninvasive assessment of myocardial perfusion. Circ Cardiovasc Imaging 2009;2:412-24.PubMedGoogle Scholar
  10. 10.
    Nygaard TW, Gibson RS, Ryan JM, Gascho JA, Watson DD, Beller GA. Prevalence of high-risk thallium-201 scintigraphic findings in left main coronary artery stenosis: Comparison with patients with multiple- and single-vessel coronary artery disease. Am J Cardiol 1984;53:462-9.PubMedGoogle Scholar
  11. 11.
    Weiss AT, Berman DS, Lew AS, Nielsen J, Potkin B, Swan HJ, et al. Transient ischemic dilation of the left ventricle on stress thallium-201 scintigraphy: A marker of severe and extensive coronary artery disease. J Am Coll Cardiol 1987;9:752-9.PubMedGoogle Scholar
  12. 12.
    McLaughlin MG, Danias PG. Transient ischemic dilation: A powerful diagnostic and prognostic finding of stress myocardial perfusion imaging. J Nucl Cardiol 2002;9:663-7.PubMedGoogle Scholar
  13. 13.
    Abidov A, Bax JJ, Hayes SW, Cohen I, Nishina H, Yoda S, et al. Integration of automatically measured transient ischemic dilation ratio into interpretation of adenosine stress myocardial perfusion SPECT for detection of severe and extensive CAD. J Nucl Med 2004;45:1999-2007.PubMedGoogle Scholar
  14. 14.
    Boucher CA, Zir LM, Beller GA, Okada RD, McKusick KA, Strauss HW, et al. Increased lung uptake of thallium-201 during exercise myocardial imaging: Clinical, hemodynamic and angiographic implications in patients with coronary artery disease. Am J Cardiol 1980;46:189-96.PubMedGoogle Scholar
  15. 15.
    Kushner FG, Okada RD, Kirshenbaum HD, Boucher CA, Strauss HW, Pohost GM. Lung thallium-201 uptake after stress testing in patients with coronary artery disease. Circulation 1981;63:341-7.PubMedGoogle Scholar
  16. 16.
    Gibson RS, Watson DD, Carabello BA, Holt ND, Beller GA. Clinical implications of increased lung uptake of thallium-201 during exercise scintigraphy 2 weeks after myocardial infarction. Am J Cardiol 1982;49:1586-93.PubMedGoogle Scholar
  17. 17.
    Levy R, Rozanski A, Berman DS, Garcia E, Van Train K, Maddahi J, et al. Analysis of the degree of pulmonary thallium washout after exercise in patients with coronary artery disease. J Am Coll Cardiol 1983;2:719-28.PubMedGoogle Scholar
  18. 18.
    Williams KA, Schneider CM. Increased stress right ventricular activity on dual isotope perfusion SPECT: A sign of multivessel and/or left main coronary artery disease. J Am Coll Cardiol 1999;34:420-7.PubMedGoogle Scholar
  19. 19.
    Johnson LL, Verdesca SA, Aude WY, Xavier RC, Nott LT, Campanella MW, et al. Postischemic stunning can affect left ventricular ejection fraction and regional wall motion on post-stress gated sestamibi tomograms. J Am Coll Cardiol 1997;30:1641-8.PubMedGoogle Scholar
  20. 20.
    Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: A 82Rb PET/CT study. J Nucl Med 2007;48:349-58.PubMedGoogle Scholar
  21. 21.
    Berman DS, Kang X, Slomka PJ, Gerlach J, de Yang L, Hayes SW, et al. Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. J Nucl Cardiol 2007;14:521-8.PubMedGoogle Scholar
  22. 22.
    Geleijnse ML, Krenning BJ, van Dalen BM, Nemes A, Soliman OII, Bosch JG, et al. Factors affecting sensitivity and specificity of diagnostic testing: Dobutamine stress echocardiography. J Am Soc Echocardiogr 2009;22:1199-208.PubMedGoogle Scholar
  23. 23.
    Attenhofer CH, Pellikka PA, Oh JK, Roger VL, Sohn DW, Seward JB. Comparison of ischemic response during exercise and dobutamine echocardiography in patients with left main coronary artery disease. J Am Coll Cardiol 1996;27:1171-7.PubMedGoogle Scholar
  24. 24.
    Olson CE, Porter TR, Deligonul U, Xie F, Anderson JR. Left ventricular volume changes during dobutamine stress echocardiography identify patients with more extensive coronary artery disease. J Am Coll Cardiol 1994;24:1268-73.PubMedGoogle Scholar
  25. 25.
    Andrade MJ, Picano E, Pingitore A, Petix N, Mazzoni V, Landi P, et al. Dipyridamole stress echocardiography in patients with severe left main coronary artery narrowing. Echo Persantine International Cooperative (EPIC) Study Group—Subproject “Left Main Detection”. Am J Cardiol 1994;73:450-5.PubMedGoogle Scholar
  26. 26.
    Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): A prospective trial. Lancet 2012;379:453-60.PubMedGoogle Scholar
  27. 27.
    Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K, et al. MR-IMPACT II: Magnetic resonance imaging for myocardial perfusion assessment in coronary artery disease trial: Perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: A comparative multicentre, multivendor trial. Eur Heart J March 4, 2012. http://eurheartj.oxfordjournals.org/content/early/2012/03/04/eurheartj.ehs022. Accessed March 12, 2012.
  28. 28.
    Sasaki T, Hansford R, Zviman MM, Kolandaivelu A, Bluemke DA, Berger RD, et al. Quantitative assessment of artifacts on cardiac magnetic resonance imaging of patients with pacemakers and implantable cardioverter defibrillators. Circulation: Cardiovascular imaging 2011. http://circimaging.ahajournals.org/content/early/2011/09/23/CIRCIMAGING.111.965764.abstract. Accessed September 25, 2011.
  29. 29.
    Paech DC, Weston AR. A systematic review of the clinical effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of suspected coronary artery disease. BMC Cardiovasc Disord 2011;11:32.PubMedGoogle Scholar
  30. 30.
    Tamarappoo BK, Gutstein A, Cheng VY, Nakazato R, Gransar H, Dey D, et al. Assessment of the relationship between stenosis severity and distribution of coronary artery stenoses on multislice computed tomographic angiography and myocardial ischemia detected by single photon emission computed tomography. J Nucl Cardiol 2010;17:791-802.PubMedGoogle Scholar
  31. 31.
    Kunadian V, Harrigan C, Zorkun C, Palmer AM, Ogando KJ, Biller LH, et al. Use of the TIMI frame count in the assessment of coronary artery blood flow and microvascular function over the past 15 years. J Thromb Thrombolysis 2009;27:316-28.PubMedGoogle Scholar
  32. 32.
    Porto I, Hamilton-Craig C, Brancati M, Burzotta F, Galiuto L, Crea F. Angiographic assessment of microvascular perfusion-myocardial blush in clinical practice. Am Heart J 2010;160:1015-22.PubMedGoogle Scholar
  33. 33.
    Johnson NP, Kirkeeide RL, Gould KL. Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology? J Am Coll Cardiol Imaging 2012;5:193-202.Google Scholar
  34. 34.
    Lim MJ, Kern MJ. Coronary pathophysiology in the cardiac catheterization laboratory. Curr Probl Cardiol 2006;31:493-550.PubMedGoogle Scholar
  35. 35.
    El Fakhri G, Sitek A, Guerin B, Kijewski MF, Di Carli MF, Moore SC. Quantitative dynamic cardiac 82Rb PET using generalized factor and compartment analyses. J Nucl Med 2005;46:1264-71.PubMedGoogle Scholar
  36. 36.
    Di Carli MF, Dorbala S, Meserve J, El Fakhri G, Sitek A, Moore SC. Clinical myocardial perfusion PET/CT. J Nucl Med 2007;48:783-93.PubMedGoogle Scholar
  37. 37.
    Yoshida K, Mullani N, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med 1996;37:1701-12.PubMedGoogle Scholar
  38. 38.
    El Fakhri G, Kardan A, Sitek A, Dorbala S, Abi-Hatem N, Lahoud Y, et al. Reproducibility and accuracy of quantitative myocardial blood flow assessment with 82Rb PET: Comparison with 13N-ammonia PET. J Nucl Med 2009;50:1062-71.PubMedGoogle Scholar
  39. 39.
    Yu M, Guaraldi MT, Mistry M, Kagan M, McDonald JL, Drew K, et al. BMS-747158-02: A novel PET myocardial perfusion imaging agent. J Nucl Cardiol 2007;14:789-98.PubMedGoogle Scholar
  40. 40.
    Nekolla SG, Reder S, Saraste A, Higuchi T, Dzewas G, Preissel A, et al. Evaluation of the novel myocardial perfusion positron-emission tomography tracer 18F-BMS-747158-02: Comparison to 13N-ammonia and validation with microspheres in a pig model. Circulation 2009;119:2333-42.PubMedGoogle Scholar
  41. 41.
    Yu M, Bozek J, Guaraldi M, Kagan M, Azure M, Robinson SP. Cardiac imaging and safety evaluation of BMS747158, a novel PET myocardial perfusion imaging agent, in chronic myocardial compromised rabbits. J Nucl Cardiol 2010;17:631-6.PubMedGoogle Scholar
  42. 42.
    Huisman MC, Higuchi T, Reder S, Nekolla SG, Poethko T, Wester H-J, et al. Initial characterization of an 18F-labeled myocardial perfusion tracer. J Nucl Med 2008;49:630-6.PubMedGoogle Scholar
  43. 43.
    Sherif HM, Nekolla SG, Saraste A, Reder S, Yu M, Robinson S, et al. Simplified quantification of myocardial flow reserve with flurpiridaz F 18: Validation with microspheres in a pig model. J Nucl Med 2011;52:617-24.PubMedGoogle Scholar
  44. 44.
    Maddahi J, Czernin J, Lazewatsky J, Huang S-C, Dahlbom M, Schelbert H, et al. Phase I, first-in-human study of BMS747158, a novel 18F-labeled tracer for myocardial perfusion PET: Dosimetry, biodistribution, safety, and imaging characteristics after a single injection at rest. J Nucl Med 2011;52:1490-8.PubMedGoogle Scholar
  45. 45.
    Jerosch-Herold M. Quantification of myocardial perfusion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2010;12:57.PubMedGoogle Scholar
  46. 46.
    Jerosch-Herold M, Wilke N, Stillman AE, Wilson RF. Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 1998;25:73.PubMedGoogle Scholar
  47. 47.
    Sicari R, Nihoyannopoulos P, Evangelista A, Kasprzak J, Lancellotti P, Poldermans D, et al. Stress echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur J Echocardiogr 2008;9:415-37.PubMedGoogle Scholar
  48. 48.
    Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 1998;97:473-83.PubMedGoogle Scholar
  49. 49.
    Christian T, Frankish M, Sisemoore J, Christian M, Gentchos G, Bell S, et al. Myocardial perfusion imaging with first-pass computed tomographic imaging: Measurement of coronary flow reserve in an animal model of regional hyperemia. J Nucl Cardiol 2010;17:625-30.PubMedGoogle Scholar
  50. 50.
    Ho K-T, Chua K-C, Klotz E, Panknin C. Stress and rest dynamic myocardial perfusion imaging by evaluation of complete time-attenuation curves with dual-source CT. JACC Cardiovasc Imaging 2010;3:811-20.PubMedGoogle Scholar
  51. 51.
    Breault C, Roth N, Slomka PJ, Moore SC, Park M, Sitek A, et al. Quantification of myocardial perfusion reserve using dynamic SPECT imaging in humans. Mosby-Year Book Inc: Philadelphia, PA; 2010.Google Scholar
  52. 52.
    Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 1994;330:1782-8.PubMedGoogle Scholar
  53. 53.
    Di Carli M, Czernin J, Hoh CK, Gerbaudo VH, Brunken RC, Huang S-C, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995;91:1944-51.PubMedGoogle Scholar
  54. 54.
    Beanlands RSB, Muzik O, Melon P, Sutor R, Sawada S, Muller D, et al. Noninvasive quantification of regional myocardial flow reserve in patients with coronary atherosclerosis using nitrogen-13 ammonia positron emission tomography: Determination of extent of altered vascular reactivity. J Am Coll Cardiol 1995;26:1465-75.PubMedGoogle Scholar
  55. 55.
    Anagnostopoulos C, Almonacid A, Fakhri G, Curillova Z, Sitek A, Roughton M, et al. Quantitative relationship between coronary vasodilator reserve assessed by 82Rb PET imaging and coronary artery stenosis severity. Eur J Nucl Med Mol Imaging 2008;35:1593-601.PubMedGoogle Scholar
  56. 56.
    Parkash R, de Kemp RA, Ruddy TD, Kitsikis A, Hart R, Beauchesne L, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol 2004;11:440-9.PubMedGoogle Scholar
  57. 57.
    Ziadi MC, Dekemp RA, Williams K, Guo A, Renaud JM, Chow BJW, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol March 14, 2012. http://www.ncbi.nlm.nih.gov/pubmed/22415819, Accessed March 19, 2012.
  58. 58.
    Naya M, Murthy VL, Klein J, Foster CR, Gaber M, Oba K, et al. Integrating semiquantitative measures of myocardial ischemia and quantitative coronary flow reserve assessed by 82Rubidium PET for the detection of multivessel coronary artery disease. J Nucl Med 2012;53:1872.Google Scholar
  59. 59.
    Fujiwara M, Tamura T, Yoshida K, Nakagawa K, Nakao M, Yamanouchi M, et al. Coronary flow reserve in angiographically normal coronary arteries with one-vessel coronary artery disease without traditional risk factors. Eur Heart J 2001;22:479-87.PubMedGoogle Scholar
  60. 60.
    De Bruyne B, Hersbach F, Pijls NHJ, Bartunek J, Bech J-W, Heyndrickx GR, et al. Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but “normal” coronary angiography. Circulation 2001;104:2401-6.PubMedGoogle Scholar
  61. 61.
    Laine H, Raitakari OT, Niinikoski H, Pitkänen O-P, Iida H, Viikari J, et al. Early impairment of coronary flow reserve in young men with borderline hypertension. J Am Coll Cardiol 1998;32:147-53.PubMedGoogle Scholar
  62. 62.
    Dayanikli F, Grambow D, Muzik O, Mosca L, Rubenfire M, Schwaiger M. Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation 1994;90:808-17.PubMedGoogle Scholar
  63. 63.
    Kaufmann PA, Gnecchi-Ruscone T, Schäfers KP, Lüscher TF, Camici PG. Low density lipoprotein cholesterol and coronary microvascular dysfunction in hypercholesterolemia. J Am Coll Cardiol 2000;36:103-9.PubMedGoogle Scholar
  64. 64.
    Iwado Y, Yoshinaga K, Furuyama H, Ito Y, Noriyasu K, Katoh C, et al. Decreased endothelium-dependent coronary vasomotion in healthy young smokers. Eur J Nucl Med Mol Imaging 2002;29:984-90.PubMedGoogle Scholar
  65. 65.
    Campisi R, Czernin J, Schoder H, Sayre JW, Marengo FD, Phelps ME, et al. Effects of long-term smoking on myocardial blood flow, coronary vasomotion, and vasodilator capacity. Circulation 1998;98:119-25.PubMedGoogle Scholar
  66. 66.
    Martin JW, Briesmiester K, Bargardi A, Muzik O, Mosca L, Duvernoy CS. Weight changes and obesity predict impaired resting and endothelium-dependent myocardial blood flow in postmenopausal women. Clin Cardiol 2005;28:13-8.PubMedGoogle Scholar
  67. 67.
    Motivala AA, Rose PA, Kim HM, Smith YR, Bartnik C, Brook RD, et al. Cardiovascular risk, obesity, and myocardial blood flow in postmenopausal women. J Nucl Cardiol 2008;15:510-7.PubMedGoogle Scholar
  68. 68.
    Di Carli MF, Charytan D, McMahon GT, Ganz P, Dorbala S, Schelbert HR. Coronary circulatory function in patients with the metabolic syndrome. J Nucl Med 2011;52:1369-77.PubMedGoogle Scholar
  69. 69.
    Di Carli MF, Afonso L, Campisi R, Ramappa P, Bianco-Batlles D, Grunberger G, et al. Coronary vascular dysfunction in premenopausal women with diabetes mellitus. Am Heart J 2002;144:711-8.PubMedGoogle Scholar
  70. 70.
    Yokoyama I, Momomura S, Ohtake T, Yonekura K, Nishikawa J, Sasaki Y, et al. Reduced myocardial flow reserve in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 1997;30:1472-7.PubMedGoogle Scholar
  71. 71.
    Di Carli MF, Janisse J, Ager J, Grunberger G. Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol 2003;41:1387-93.PubMedGoogle Scholar
  72. 72.
    Charytan DM, Shelbert HR, Di Carli MF. Coronary microvascular function in early chronic kidney disease/clinical perspective. Circ Cardiovasc Imaging 2010;3:663-71.PubMedGoogle Scholar
  73. 73.
    Quyyumi AA, Dakak N, Andrews NP, Husain S, Arora S, Gilligan DM, et al. Nitric oxide activity in the human coronary circulation. Impact of risk factors for coronary atherosclerosis. J Clin Invest 1995;95:1747-55.PubMedGoogle Scholar
  74. 74.
    Cox DA, Vita JA, Treasure CB, Fish RD, Alexander RW, Ganz P, et al. Atherosclerosis impairs flow-mediated dilation of coronary arteries in humans. Circulation 1989;80:458-65.PubMedGoogle Scholar
  75. 75.
    Curillova Z, Yaman BF, Dorbala S, Kwong RY, Sitek A, Fakhri G, et al. Quantitative relationship between coronary calcium content and coronary flow reserve as assessed by integrated PET/CT imaging. Eur J Nucl Med Mol Imaging 2009;36:1603-10.PubMedGoogle Scholar
  76. 76.
    Beltrame JF, Limaye SB, Wuttke RD, Horowitz JD. Coronary hemodynamic and metabolic studies of the coronary slow flow phenomenon. Am Heart J 2003;146:84-90.PubMedGoogle Scholar
  77. 77.
    Johnson BD, Shaw LJ, Buchthal SD, Bairey Merz CN, Kim H-W, Scott KN, et al. Prognosis in women with myocardial ischemia in the absence of obstructive coronary disease: Results from the National Institutes of Health-National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation 2004;109:2993-9.PubMedGoogle Scholar
  78. 78.
    Suzuki H, Takeyama Y, Koba S, Suwa Y, Katagiri T. Small vessel pathology and coronary hemodynamics in patients with microvascular angina. Int J Cardiol 1994;43:139-50.PubMedGoogle Scholar
  79. 79.
    Kajander S, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A, et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation 2010;122:603-13.PubMedGoogle Scholar
  80. 80.
    Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation 2011;124:2215-24.PubMedGoogle Scholar
  81. 81.
    Fukushima K, Javadi MS, Higuchi T, Lautamaki R, Merrill J, Nekolla SG, et al. Prediction of short-term cardiovascular events using quantification of global myocardial flow reserve in patients referred for clinical 82Rb PET perfusion imaging. J Nucl Med 2011;52:726-32.PubMedGoogle Scholar
  82. 82.
    Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography: Added value of coronary flow reserve. J Am Coll Cardiol 2009;54:150-6.PubMedGoogle Scholar
  83. 83.
    Tio RA, Dabeshlim A, Siebelink H-MJ, de Sutter J, Hillege HL, Zeebregts CJ, et al. Comparison between the prognostic value of left ventricular function and myocardial perfusion reserve in patients with ischemic heart disease. J Nucl Med 2009;50:214-9.PubMedGoogle Scholar
  84. 84.
    Ziadi MC, deKemp RA, Williams KA, Guo A, Chow BJW, Renaud JM, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol 2011;58:740-8.PubMedGoogle Scholar
  85. 85.
    Zeiher A, Drexler H, Wollschlager H, Just H. Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis. Circulation 1991;84:1984-92.PubMedGoogle Scholar
  86. 86.
    Schachinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 2000;101:1899-906.PubMedGoogle Scholar
  87. 87.
    Halcox JPJ, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation 2002;106:653-8.PubMedGoogle Scholar
  88. 88.
    Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR, Lerman A. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 2000;101:948-54.PubMedGoogle Scholar
  89. 89.
    von Mering GO, Arant CB, Wessel TR, McGorray SP, Bairey Merz CN, Sharaf BL, et al. Abnormal coronary vasomotion as a prognostic indicator of cardiovascular events in women: Results from the national heart, lung, and blood institute-sponsored women’s ischemia syndrome evaluation (WISE). Circulation 2004;109:722-5.Google Scholar
  90. 90.
    Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 2003;349:1027-35.PubMedGoogle Scholar
  91. 91.
    Huggins GS, Pasternak RC, Alpert NM, Fischman AJ, Gewirtz H. Effects of short-term treatment of hyperlipidemia on coronary vasodilator function and myocardial perfusion in regions having substantial impairment of baseline dilator reverse. Circulation 1998;98:1291-6.PubMedGoogle Scholar
  92. 92.
    Ishida K, Geshi T, Nakano A, Uzui H, Mitsuke Y, Okazawa H, et al. Beneficial effects of statin treatment on coronary microvascular dysfunction and left ventricular remodeling in patients with acute myocardial infarction. Int J Cardiol 2012;155:442-7.PubMedGoogle Scholar
  93. 93.
    Alexanderson E, García-Rojas L, Jiménez M, Jácome R, Calleja R, Martínez A, et al. Effect of ezetimibe-simvastatine over endothelial dysfunction in dyslipidemic patients: Assessment by 13N-ammonia positron emission tomography. J Nucl Cardiol 2010;17:1015-22.PubMedGoogle Scholar
  94. 94.
    Hong SJ, Choi SC, Kim JS, Shim WJ, Park SM, Ahn CM, et al. Low-dose versus moderate-dose atorvastatin after acute myocardial infarction: 8-month effects on coronary flow reserve and angiogenic cell mobilisation. Heart 2010;96:756-64.PubMedGoogle Scholar
  95. 95.
    Baller D, Notohamiprodjo G, Gleichmann U, Holzinger J, Weise R, Lehmann J. Improvement in coronary flow reserve determined by positron emission tomography after 6 months of cholesterol-lowering therapy in patients with early stages of coronary atherosclerosis. Circulation 1999;99:2871-5.PubMedGoogle Scholar
  96. 96.
    Fujimoto K, Hozumi T, Watanabe H, Shimada K, Takeuchi M, Sakanoue Y, et al. Effect of fluvastatin therapy on coronary flow reserve in patients with hypercholesterolemia. Am J Cardiol 2004;93:1419-21. A10.PubMedGoogle Scholar
  97. 97.
    Takagi A, Tsurumi Y, Ishizuka N, Omori H, Arai K, Hagiwara N, et al. Single administration of cerivastatin, an HMG-CoA reductase inhibitor, improves the coronary flow velocity reserve: A transthoracic Doppler echocardiography study. Heart Vessels 2006;21:298-301.PubMedGoogle Scholar
  98. 98.
    Ilveskoski E, Lehtimäki T, Laaksonen R, Janatuinen T, Vesalainen R, Nuutila P, et al. Improvement of myocardial blood flow by lipid-lowering therapy with pravastatin is modulated by apolipoprotein E genotype. Scand J Clin Lab Invest 2007;67:723-34.PubMedGoogle Scholar
  99. 99.
    Akinboboye OO, Chou R-L, Bergmann SR. Augmentation of myocardial blood flow in hypertensive heart disease by angiotensin antagonists: A comparison of lisinopril and losartan. J Am Coll Cardiol 2002;40:703-9.PubMedGoogle Scholar
  100. 100.
    Masuda D, Nohara R, Tamaki N, Hosokawa R, Inada H, Hirai T, et al. Evaluation of coronary blood flow reserve by13 N-NH3 positron emission computed tomography (PET) with dipyridamole in the treatment of hypertension with the ACE inhibitor (Cilazapril). Ann Nucl Med 2000;14:353-60.PubMedGoogle Scholar
  101. 101.
    Chen J-W, Hsu N-W, Wu T-C, Lin S-J, Chang M-S. Long-term angiotensin-converting enzyme inhibition reduces plasma asymmetric dimethylarginine and improves endothelial nitric oxide bioavailability and coronary microvascular function in patients with syndrome X. Am J Cardiol 2002;90:974-82.PubMedGoogle Scholar
  102. 102.
    Kawata T, Daimon M, Hasegawa R, Teramoto K, Toyoda T, Sekine T, et al. Effect on coronary flow velocity reserve in patients with type 2 diabetes mellitus: Comparison between angiotensin-converting enzyme inhibitor and angiotensin II type 1 receptor antagonist. Am Heart J 2006;151:798.e9-15.Google Scholar
  103. 103.
    Kawata T, Daimon M, Hasegawa R, Teramoto K, Toyoda T, Sekine T, et al. Effect of angiotensin-converting enzyme inhibitor on serum asymmetric dimethylarginine and coronary circulation in patients with type 2 diabetes mellitus. Int J Cardiol 2009;132:286-8.PubMedGoogle Scholar
  104. 104.
    Hinoi T, Tomohiro Y, Kajiwara S, Matsuo S, Fujimoto Y, Yamamoto S, et al. Telmisartan, an angiotensin II type 1 receptor blocker, improves coronary microcirculation and insulin resistance among essential hypertensive patients without left ventricular hypertrophy. Hypertens Res 2008;31:615-22.PubMedGoogle Scholar
  105. 105.
    Pauly DF, Johnson BD, Anderson RD, Handberg EM, Smith KM, Cooper-DeHoff RM, et al. In women with symptoms of cardiac ischemia, nonobstructive coronary arteries, and microvascular dysfunction, angiotensin-converting enzyme inhibition is associated with improved microvascular function: A double-blind randomized study from the National Heart, Lung and Blood Institute Women’s Ischemia Syndrome Evaluation (WISE). Am Heart J 2011;162:678-84.PubMedGoogle Scholar
  106. 106.
    Schneider CA, Voth E, Moka D, Baer FM, Melin J, Bol A, et al. Improvement of myocardial blood flow to ischemic regions by angiotensin-converting enzyme inhibition with quinaprilat IV: A study using [15O] water dobutamine stress positron emission tomography. J Am Coll Cardiol 1999;34:1005-11.PubMedGoogle Scholar
  107. 107.
    Motz W, Strauer BE. Improvement of coronary flow reserve after long-term therapy with enalapril. Hypertension 1996;27:1031-8.PubMedGoogle Scholar
  108. 108.
    Kamezaki F, Tasaki H, Yamashita K, Shibata K, Hirakawa N, Tsutsui M, et al. Angiotensin receptor blocker improves coronary flow velocity reserve in hypertensive patients: Comparison with calcium channel blocker. Hypertens Res 2007;30:699-706.PubMedGoogle Scholar
  109. 109.
    Xiaozhen H, Yun Z, Mei Z, Yu S. Effect of carvedilol on coronary flow reserve in patients with hypertensive left-ventricular hypertrophy. Blood Press 2010;19:40-7.PubMedGoogle Scholar
  110. 110.
    Böttcher M, Czernin J, Sun K, Phelps ME, Schelbert HR. Effect of beta 1 adrenergic receptor blockade on myocardial blood flow and vasodilatory capacity. J Nucl Med 1997;38:442-6.PubMedGoogle Scholar
  111. 111.
    Billinger M, Seiler C, Fleisch M, Eberli FR, Meier B, Hess OM. Do beta-adrenergic blocking agents increase coronary flow reserve? J Am Coll Cardiol 2001;38:1866-71.PubMedGoogle Scholar
  112. 112.
    Gullu H, Erdogan D, Caliskan M, Tok D, Yildirim I, Sezgin AT, et al. Different effects of atenolol and nebivolol on coronary flow reserve. Heart 2006;92:1690-1.PubMedGoogle Scholar
  113. 113.
    Erdogan D, Gullu H, Caliskan M, Ciftci O, Baycan S, Yildirir A, et al. Nebivolol improves coronary flow reserve in patients with idiopathic dilated cardiomyopathy. Heart 2007;93:319-24.PubMedGoogle Scholar
  114. 114.
    Neglia D, De Maria R, Masi S, Gallopin M, Pisani P, Pardini S, et al. Effects of long-term treatment with carvedilol on myocardial blood flow in idiopathic dilated cardiomyopathy. Heart 2007;93:808-13.PubMedGoogle Scholar
  115. 115.
    Togni M, Vigorito F, Windecker S, Abrecht L, Wenaweser P, Cook S, et al. Does the beta-blocker nebivolol increase coronary flow reserve? Cardiovasc Drugs Ther 2007;21:99-108.PubMedGoogle Scholar
  116. 116.
    Galderisi M, D’Errico A, Sidiropulos M, Innelli P, de Divitiis O, de Simone G. Nebivolol induces parallel improvement of left ventricular filling pressure and coronary flow reserve in uncomplicated arterial hypertension. J Hypertens 2009;27:2108-15.PubMedGoogle Scholar
  117. 117.
    Zervos G, Zusman RM, Swindle LA, Alpert NM, Fischman AJ, Gewirtz H. Effects of nifedipine on myocardial blood flow and systolic function in humans with ischemic heart disease. Coron Artery Dis 1999;10:185-94.PubMedGoogle Scholar
  118. 118.
    Yoshinaga K, Beanlands RSB, deKemp RA, Lortie M, Morin J, Aung M, et al. Effect of exercise training on myocardial blood flow in patients with stable coronary artery disease. Am Heart J 2006;151:1324.e11-8.Google Scholar
  119. 119.
    Coppola A, Marfella R, Coppola L, Tagliamonte E, Fontana D, Liguori E, et al. Effect of weight loss on coronary circulation and adiponectin levels in obese women. Int J Cardiol 2009;134:414-6.PubMedGoogle Scholar
  120. 120.
    Nissen SE, Nicholls SJ, Sipahi I, Libby P, Raichlen JS, Ballantyne CM, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: The ASTEROID trial. JAMA 2006;295:1556-65.PubMedGoogle Scholar
  121. 121.
    Gould KL, Ornish D, Scherwitz L, Brown S, Edens RP, Hess MJ, et al. Changes in myocardial perfusion abnormalities by positron emission tomography after long-term, intense risk factor modification. JAMA 1995;274:894-901.PubMedGoogle Scholar
  122. 122.
    Venkataraman R, Belardinelli L, Blackburn B, Heo J, Iskandrian AE. A study of the effects of ranolazine using automated quantitative analysis of serial myocardial perfusion images. JACC Cardiovasc Imaging 2009;2:1301-9.PubMedGoogle Scholar
  123. 123.
    Venkataraman R, Aljaroudi W, Belardinelli L, Heo J, Iskandrian AE. The effect of ranolazine on the vasodilator-induced myocardial perfusion abnormality. J Nucl Cardiol 2011;18:456-62.PubMedGoogle Scholar
  124. 124.
    Tonino PAL, De Bruyne B, Pijls NHJ, Siebert U, Ikeno F, van `t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009;360:213-24.PubMedGoogle Scholar
  125. 125.
    Smith SC Jr, Feldman TE, Hirshfeld JW Jr, Jacobs AK, Kern MJ, King SB III, et al. ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update 2001 Guidelines for Percutaneous Coronary Intervention). Circulation 2006;113:e166-286.PubMedGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2012

Authors and Affiliations

  • Venkatesh L. Murthy
    • 1
    • 2
  • Marcelo F. Di Carli
    • 1
    • 2
    • 3
  1. 1.Noninvasive Cardiovascular Imaging Program, Departments of Medicine and RadiologyBrigham and Women’s HospitalBostonUSA
  2. 2.Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s HospitalBostonUSA
  3. 3.Division of Nuclear Medicine and Molecular Imaging, Department of RadiologyBrigham and Women’s HospitalBostonUSA

Personalised recommendations