Journal of Nuclear Cardiology

, Volume 19, Issue 3, pp 424–437 | Cite as

Quantitative Nuclear Cardiology: We are almost there!

Tenth Annual Mario S. Verani Memorial Lecture

Notes

Acknowledgments

Dr Garcia acknowledges the long-term collaboration with Drs Tracy Faber, Ji Chen, Cesar Santana, Fabio Esteves, Liudmilla Verdes, and James Galt and members of our team Russell Folks, David Cooke, Daya Manatunga, and Nettie Sutton. Dr Garcia has been an investigator in projects funded by GE Healthcare (DNM 530c, Adreview {I-123-MIBG} and Molecular Insight Pharmaceuticals {I-123-BMIPP} mentioned in this article). Dr Garcia and Emory University receive royalties from the sale of the Emory Cardiac Toolbox™, phase analysis, image fusion, and AC software also mentioned in this article. The terms of this arrangement have been reviewed and approved by Emory University in accordance with its conflict-of-interest practice.

References

  1. 1.
    Zoghbi WA. In Memoriam. Mario S Verani MD. Circulation 2002;105:782-3.CrossRefGoogle Scholar
  2. 2.
    Udelson JE. Testing our tests: The evidence bar is rising. Regulatory considerations in the development of cardiac imaging. J Nucl Cardiol 2011;18:547-60.PubMedCrossRefGoogle Scholar
  3. 3.
    Von Hevesy G. Selected papers of George Hevesy. London: Pergamon Press; 1967.Google Scholar
  4. 4.
    Cherry SR, Sorenson JA, Phelps ME. Tracer kinetic modeling. In: Physics in nuclear medicine, 3rd ed, chap 20. Philadelphia: Saunders; 2003.Google Scholar
  5. 5.
    Garcia EV, Galt R, Faber TL, Chen J (2009) Principles of nuclear cardiology imaging. In: Dilsizian V, Narula J, editors. Atlas of nuclear cardiology, 3rd ed, chap 1. Hoboken: Current Medicine, p. 1-34.Google Scholar
  6. 6.
    Ficaro EP, Lee BC, Kritzman JN, Corbett JR. Corridor4DM: The Michigan method for quantitative nuclear cardiology. J Nucl Cardiol 2007;14:455-65.PubMedCrossRefGoogle Scholar
  7. 7.
    Germano G, Kavanagh PB, Slomka PJ, et al. Quantitation in gated perfusion SPECT imaging: The Cedars-Sinai approach. J Nucl Cardiol 2007;14:433-54.PubMedCrossRefGoogle Scholar
  8. 8.
    Garcia EV, Faber TL, Cooke CD, Folks RD, Chen J, Santana C. The increasing role of quantification in nuclear cardiology: The Emory approach. J Nucl Cardiol 2007;14:420-32.PubMedCrossRefGoogle Scholar
  9. 9.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart—A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;4:539-42.CrossRefGoogle Scholar
  10. 10.
    Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884-8.PubMedCrossRefGoogle Scholar
  11. 11.
    Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995;36:2138-47.PubMedGoogle Scholar
  12. 12.
    Anger HO. Scintillation camera. Rev Sci Instrum 1958;29:27-33.CrossRefGoogle Scholar
  13. 13.
    Radon J. Uber due bestimmung von funktionen durch ihre intergralwerte langsgewisser mannigfaltigkeiten (on the determination of functions from their integrals along certain manifolds). Berichte Saechsische Akademie der Wissenschaften 1917;29:262-77.Google Scholar
  14. 14.
    Beller GA, Bergmann SR. Myocardial perfusion imaging agents: SPECT and PET. J Nucl Cardiol 2004;11:71-86.PubMedCrossRefGoogle Scholar
  15. 15.
    Garcia EV, Faber TL, Esteves FP. Cardiac dedicated ultrafast SPECT cameras: New designs and clinical implications. J Nucl Med 2011;52:210-7.PubMedCrossRefGoogle Scholar
  16. 16.
    Sharir T, Slomka PJ, Berman DS. Solid-State SPECT technology: Fast and furious. J Nucl Cardiol 2010;17:890-6.PubMedCrossRefGoogle Scholar
  17. 17.
    Maddahi J, Mendez R, Mahmarian J, Thomas G, Babla H, Bai C, et al. Prospective multi-center evaluation of rapid gated SPECT myocardial perfusion upright imaging. J Nucl Cardiol 2009;16:351-7.PubMedCrossRefGoogle Scholar
  18. 18.
    Sharir T, Slomka PJ, Hayes SW, DiCarli MF, Ziffer JA, Martin WH, et al. Multicenter trial of high-speed versus conventional single-photon emission computed tomography imaging: quantitative results of myocardial perfusion and left ventricular function. J Am Coll Cardiol 2010;55:1965-74.PubMedCrossRefGoogle Scholar
  19. 19.
    Esteves FP, Raggi P, Folks RD, Keidar Z, Askew JW, Rispler S, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: Multicenter comparison with standard dual detector cameras. J Nucl Cardiol 2009;16:927-34.PubMedCrossRefGoogle Scholar
  20. 20.
    Duvall WL, Croft LB, Ginsberg ES, et al. Reduced isotope dose and imaging time with a high-efficiency CZT SPECT camera. J Nucl Cardiol 2011;18:847-57.PubMedCrossRefGoogle Scholar
  21. 21.
    Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1982;1:113-22.PubMedCrossRefGoogle Scholar
  22. 22.
    De Pierro AR, Yamagishi MEB. Fast EM-like methods for maximum a posteriori estimates in emission tomography. IEEE Trans Med Imaging 2001;20:280-8.PubMedCrossRefGoogle Scholar
  23. 23.
    Borges-Neto S, Pagnanelli RA, Shaw LK, Honeycutt E, Shwartz S, Adams GL, et al. Clinical results of a novel wide beam reconstruction method for shortening scan time of Tc-99m cardiac SPECT perfusion studies. J Nucl Cardiol 2007;14:555-65.PubMedCrossRefGoogle Scholar
  24. 24.
    DePuey EG, Gadraju R, Clark J, Thompson L, Anstett F, Shwartz SC. Ordered subset expectation maximization and wide beam reconstruction “half-time” gated myocardial perfusion SPECT functional imaging: A comparison to “full-time” filtered backprojection. J Nucl Cardiol 2008;15:547-63.PubMedCrossRefGoogle Scholar
  25. 25.
    Wide Beam Reconstruction, UltraSPECT Inc., http://www.ultraspect.com. Accessed 22 Mar 2012.
  26. 26.
    Astonish, Philips Medical Systems, www.medical.philips.com. Accessed 22 Mar 2012.
  27. 27.
    Evolution, GE Healthcare, www.gehealthcare.com. Accessed 22 Mar 2012.
  28. 28.
    Flash 3D, Siemens Medical Solutions USA, www.siemens.com/medical. Accessed 22 Mar 2012.
  29. 29.
    nSpeed, DIGIRAD Corporation, www.digirad.com. Accessed 22 Mar 2012.
  30. 30.
    Cerqueira MD, Allman KC, Ficaro EP, et al. Recommendations for reducing radiation exposure in myocardial perfusion imaging. J Nucl Cardiol 2010;17:709-18.PubMedCrossRefGoogle Scholar
  31. 31.
    Hendel RC, Corbett JR, Cullom SJ, et al. The value and practice of attenuation correction for myocardial perfusion SPECT imaging: A joint position statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. J Nucl Cardiol 2002;9:135-43.PubMedCrossRefGoogle Scholar
  32. 32.
    Heller GV, Links J, Bateman TM, et al. American Society of Nuclear Cardiology and Society of Nuclear Medicine joint position statement: Attenuation correction of myocardial perfusion SPECT scintigraphy. J Nucl Cardiol 2004;11:229-30.PubMedCrossRefGoogle Scholar
  33. 33.
    Heller GV, Bateman TM, Johnson LL, et al. Clinical value of attenuation correction in stress-only Tc-99m sestamibi SPECT imaging. J Nucl Cardiol 2004;11:273-81.PubMedCrossRefGoogle Scholar
  34. 34.
    Ficaro EP, Fessler JA, Achermann RJ, et al. Simultaneous transmission-emission thallium-201 cardiac SPECT: Effect of attenuation correction on myocardial tracer distribution. J Nucl Med 1995;36:921-31.PubMedGoogle Scholar
  35. 35.
    Grossman GB, Garcia EV, Bateman TM, Heller GV, Johnson LL, Folks RD, et al. Quantitative Tc-99m sestamibi attenuation corrected SPECT: Development and multicenter trial validation of myocardial perfusion stress gender-independent normal database in an obese population. J Nucl Cardiol 2004;11:263-72.PubMedCrossRefGoogle Scholar
  36. 36.
    Prvulovich EM, Lonn AH, Bomanji JB, et al. Effect of attenuation correction on myocardial thallium-201 distribution in patients with a low likelihood of coronary artery disease. Eur J Nucl Med 1997;24:266-75.PubMedGoogle Scholar
  37. 37.
    Kluge R, Sattler B, Seese A, et al. Attenuation correction by simultaneous emission-transmission myocardial single-photon emission tomography using a technetium-99m-labelled radiotracer: Impact on diagnostic accuracy. Eur J Nucl Med 1997;24:1107-14.PubMedGoogle Scholar
  38. 38.
    Ficaro EP. Should SPET attenuation correction be more widely employed in routine clinical practice? Eur J Nucl Med Mol Imaging 2002;29:409-12.PubMedCrossRefGoogle Scholar
  39. 39.
    Links JM, DePuey EG, Taillefer R, Becker LC. Attenuation correction and gating synergistically improve the diagnostic accuracy of myocardial perfusion SPECT. J Nucl Cardiol 2002;9:183-7.PubMedCrossRefGoogle Scholar
  40. 40.
    Thompson RC, Heller GV, Johnson LJ, Case JA, Cullom J, Garcia EV, et al. Value of attenuation correction on ECG-gated myocardial perfusion imaging related to body mass index. J Nucl Cardiol 2005;12:195-202.PubMedCrossRefGoogle Scholar
  41. 41.
    Duvernoy CS, Ficaro EP, Karabajakian MZ, Rose PA, Corbett JR. Improved detection of left main coronary artery disease with attenuation-corrected SPECT. J Nucl Cardiol 2000;7:639-48.PubMedCrossRefGoogle Scholar
  42. 42.
    Garcia EV. SPECT attenuation correction: An essential tool to realize nuclear cardiology’s manifest destiny. J Nucl Cardiol 2007;14:16-24.PubMedCrossRefGoogle Scholar
  43. 43.
    Di Carli MF, Hachamovich R. New technology for noninvasive evaluation of coronary artery disease. Circulation 2007;115:1464-80.PubMedCrossRefGoogle Scholar
  44. 44.
    Gould KL, Pan T, Johnson NP, et al. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: A definitive analysis of causes, consequences, and corrections. J Nucl Med 2007;48:1112-21.PubMedCrossRefGoogle Scholar
  45. 45.
    Faber TL, Santana CA, Garcia EV, et al. Three-dimensional fusion of coronary arteries with myocardial perfusion distributions: Clinical validation. J Nucl Med 2004;45:745-53.PubMedGoogle Scholar
  46. 46.
    Rispler S, Keidar Z, Ghersin E, et al. Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J Am Coll Cardiol 2007;49:1059-67.PubMedCrossRefGoogle Scholar
  47. 47.
    Santana CA, Garcia EV, Faber TL, et al. Diagnostic performance of fusion of myocardial perfusion and computed tomography coronary angiography. J Nucl Cardiol 2009;16:201-11.PubMedCrossRefGoogle Scholar
  48. 48.
    Gaemperli O, Schepis T, Husman L, et al. Cardiac image fusion from stand-alone SPECT and CT: Clinical experience. J Nucl Med 2007;48:696-703.PubMedCrossRefGoogle Scholar
  49. 49.
    Garcia EV, Cullom SJ, Galt JR. Symbiotic developments in PET and SPECT to quantify and display myocardial tomography [editorial]. J Nucl Med 1991;32:166-8.PubMedGoogle Scholar
  50. 50.
    Garcia EV, Eisner RL, Patterson RE. What should we expect from cardiac PET? (editorial). J Nucl Med 1993;34:978-80.PubMedGoogle Scholar
  51. 51.
    Machac J, Chen H, Almeida OD, et al. Comparison of 2D and high dose and low dose 3D gated myocardial Rb-82 PET imaging. J Nucl Med 2002;43:777.Google Scholar
  52. 52.
    Maddahi J. Properties of an ideal PET perfusion tracer: New PET tracer and data. J Nucl Cardiol 2012;19:S30-7.PubMedCrossRefGoogle Scholar
  53. 53.
    Schelbert HR. Positron emission tomography. In: Iskandrian AE, Garcia EV, editors. Nuclear cardiac imaging, chap 38. New York: Oxford University Press; 2008, p. 703-18.Google Scholar
  54. 54.
    Di Carli M. Advances in positron emission tomography. J Nucl Cardiol 2004;11:719-32.PubMedCrossRefGoogle Scholar
  55. 55.
    Rudd JHF, Narula J, Strauss HW, et al. Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: Ready for prime time? J Am Coll Cardiol 2010;55:2527-35.PubMedCrossRefGoogle Scholar
  56. 56.
    Kontos MC, Dilsizian V, Weiland F, DePuey G, Mahmarian JJ, Iskandrian AE, et al. Iodofiltic acid I 123 (BMIPP) fatty acid imaging improves initial diagnosis in emergency department patients with suspected acute coronary syndromes. A multicenter trial. J Am Coll Cardiol 2010;56:290-9.PubMedCrossRefGoogle Scholar
  57. 57.
    Bax JJ, Van der Wall EE, Schalij MJ. Cardiac resynchronization therapy for heart failure. N Engl J Med 2002;347:1803-4.PubMedCrossRefGoogle Scholar
  58. 58.
    Nagarahara D, Nakata T, Hashimoto A, et al. Predicting the need for an implantable cardioverter defibrillator using cardiac metaiodobenzylguanidine activity together with plasma natriuretic peptide concentration or left ventricular function. J Nucl Med 2008;49:225-33.CrossRefGoogle Scholar
  59. 59.
    Chen J, Garcia EV, Folks RD, Cooke CD, Faber TL, Tauxe EL, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: Development of a diagnostic tool for the assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol 2005;12:687-95.PubMedCrossRefGoogle Scholar
  60. 60.
    Chen J, Garcia EV, Bax JJ, Iskandrian AE, Borges-Neto S, Soman P. SPECT myocardial perfusion imaging for the assessment of left ventricular mechanical dyssynchrony. J Nucl Cardiol 2011;18:685-94.PubMedCrossRefGoogle Scholar
  61. 61.
    Trimble MA, Velazquez EJ, Adams GL, et al. Repeatability and reproducibility of phase analysis of gated SPECT myocardial perfusion imaging used to quantify cardiac dyssynchrony. Nucl Med Commun 2008;29:374-81.PubMedCrossRefGoogle Scholar
  62. 62.
    Lin X, Xu H, Zhao X, Folks RD, Garcia EV, Soman P, et al. Repeatability of left ventricular dyssynchrony and function parameters in serial gated myocardial perfusion SPECT studies. J Nucl Cardiol 2010;17:811-6.PubMedCrossRefGoogle Scholar
  63. 63.
    Boogers MJ, Chen J, van Bommel RJ, Borleffs CJ, Dibbets-Schneider P, van der Heil B, et al. Optimal left ventricular lead position assessed with phase analysis on gated myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging 2011;38:230-8.PubMedCrossRefGoogle Scholar
  64. 64.
    Jacobson AF, Senior R, Cerqueira MD, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 2010;55:2212-21.PubMedCrossRefGoogle Scholar
  65. 65.
    Mankoff DA. A definition of molecular imaging. J Nucl Med 2007;48:18N, 21N.Google Scholar
  66. 66.
    Dobrucki LW, Sinusas AJ. PET and SPECT in cardiovascular molecular imaging. Nat Rev Cardiol 2010;7:38-47.PubMedCrossRefGoogle Scholar
  67. 67.
    Sinusas AJ, Thomas JD, Mills G. The future of molecular imaging. JACC Cardiovasc Imaging 2011;4:799-806.PubMedCrossRefGoogle Scholar
  68. 68.
    Garcia EV. Quantitative myocardial perfusion single-photon emission computed tomographic imaging: Quo vadis? (Where do we go from here?). J Nucl Cardiol 1994;1:83-93.PubMedCrossRefGoogle Scholar
  69. 69.
    Sadehi MM, Schwartz RG, Beanlands RS, et al. Cardiovascular nuclear imaging. Balancing proven clinical value and potential radiation risk. J Nucl Med 2011;52:1162-4.CrossRefGoogle Scholar
  70. 70.
    DePuey EG, Mahmarian JJ, Miller TD, et al. Patient-centered imaging. J Nucl Cardiol 2012; in press.Google Scholar
  71. 71.
    Porter ME. What is value in health care? N Engl J Med 2010;363:2477-80.PubMedCrossRefGoogle Scholar
  72. 72.
    Ruzsics B, Lee H, Zwerner PL, Gebregziabher M, Costello P, Schoepf UJ. Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur Radiol 2008;18:2414-24.PubMedCrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2012

Authors and Affiliations

  1. 1.Department of Radiology and Imaging Sciences, Emory University School of MedicineEmory University HospitalAtlantaUSA

Personalised recommendations