Journal of Nuclear Cardiology

, Volume 19, Issue 3, pp 551–581 | Cite as

Advances in SPECT camera software and hardware: Currently available and new on the horizon

  • E. Gordon DePueyEmail author
Review Article


A long-standing limitation of radionuclide myocardial perfusion SPECT is its relatively lengthy acquisition time, as compared to stress echocardiography and cardiac CT. The American Society of Nuclear Cardiology (ASNC) and the Intersocietal Commission for the Accreditation of Nuclear Medicine Laboratories (ICANL) have rightfully insisted that acquisition times not be decreased below those set forth in the ASNC Guidelines so that adequate image counting statistics are maintained, thereby maintaining test sensitivity and minimizing artifacts associated with low count density studies. New software methods and new innovative hardware described below, however, now allow for significantly shortened SPECT acquisition times without a decrease in image quality.

More recently, the media, the public, and the medical community have drawn attention to patient radiation exposure associated with radiographic, nuclear medicine, and nuclear cardiology procedures and the...


Coronary Flow Reserve Order Subset Expectation Maximization Myocardial Perfusion SPECT Cadmium Zinc Telluride Resolution Recovery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose from cardiac diagnostic imaging. Circulation 2007;116:1290-305.PubMedCrossRefGoogle Scholar
  2. 2.
    Bogdanich W, Ruiz RR. FDA to increase oversight of medical radiation. New York Times, February 10, 2010;B7.Google Scholar
  3. 3.
    DePuey EG, Mahmarian JJ, Miller TD, Einstein AJ, Hansen CL, Holly TA, et al. Patient-centered imaging, ASNC Preferred Practice Statement. J Nucl Cardiol (in press).Google Scholar
  4. 4.
    Cerqueira MD, Allman KC, Ficaro EP, Hansen CL, Nichols KJ, Thompson RC, et al. Recommendations for reducing radiation exposure in myocardial perfusion imaging. J Nucl Cardiol 2010;17:709–18.PubMedCrossRefGoogle Scholar
  5. 5.
    Patton JA, Slomka PJ, Germano G, Berman DS. Recent technological advances in nuclear cardiology. J Nucl Cardiol 2007;14:501-13.PubMedCrossRefGoogle Scholar
  6. 6.
    Garcia EV, Faber TL. New trends in camera and software technology in nuclear cardiology. Cardiol Clin 2009;27:227-36.PubMedCrossRefGoogle Scholar
  7. 7.
    DePuey EG. New software methods to cope with reduced counting statistics: Shorter SPECT acquisitions and many more possibilities. J Nucl Cardiol 2009;16:335-8.PubMedCrossRefGoogle Scholar
  8. 8.
    Sharir T, Slomka PJ, Berman DS. Solid-state SPECT technology: Fast and furious. J Nucl Cardiol 2010;17:890-6.PubMedCrossRefGoogle Scholar
  9. 9.
    Garcia EV, Faber TL, Esteves FP. Cardiac dedicated ultrafast SPECT cameras: New designs and clinical implications. J Nucl Med 2011;52:210-7.PubMedCrossRefGoogle Scholar
  10. 10.
    Metz CE. The geometric transfer function component for scintillation camera collimators with straight parallel holes. Phys Med Biol 1980;25:1059-70.PubMedCrossRefGoogle Scholar
  11. 11.
    Tsui BMW, Gullberg GT. The geometric transfer-function for cone and fan beam collimators. Phys Med Biol 1990;35:81-93.PubMedCrossRefGoogle Scholar
  12. 12.
    Tsui BMW, Hu HB, Gillard DR, Gullberg GT. Implementation of simultaneous attenuation and detector response correction in SPECT. IEEE Trans Nucl Sci 1988;35:778-83.CrossRefGoogle Scholar
  13. 13.
    Tsui BMW, Frey EC, Zhao X, Lalush DS, Johnston RE, McCartney WH. The importance and implementation of accurate three-dimensional compensation methods for quantitative SPECT. Phys Med Biol 1994;39:509-30.PubMedCrossRefGoogle Scholar
  14. 14.
    Tsui BMW, Zhao XD, Frey EC, Gullberg GT. Characteristics of reconstructed point response in three-dimensional spatially variant detector response compensation in SPECT. In: Grangeat P, Amans J-L, editors. Three-dimensional image reconstruction in radiology and nuclear medicine. Dordrecht: Kluwer Academic Publishers; 1996. p. 509-30.Google Scholar
  15. 15.
    Borges-Neto S, Pagnanelli RA, Shaw LK, Honeycutt E, Shwartz SC, Adams GL, et al. Clinical results of a novel wide beam reconstruction method for shortenings can time of Tc-99m cardiac SPECT perfusion studies. J Nucl Cardiol 2007;14:555-65.PubMedCrossRefGoogle Scholar
  16. 16.
    DePuey EG, Gadiraju R, Clark J, Thompson L, Anstett F, Shwartz SC. Ordered subset expectation that maximization and wide beam reconstruction “half-time” gated myocardial perfusion SPECT functional imaging: A comparison to “full-time” filtered backprojection. J Nucl Cardiol 2008;15:547-63.PubMedCrossRefGoogle Scholar
  17. 17.
    Philipe P, Bruyant J. Analytic and iterative reconstruction algorithms in SPECT. J Nucl Med 2002;43:1343-58.Google Scholar
  18. 18.
    Green PJ. Bayesian reconstruction from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging 1990;9:84-93.PubMedCrossRefGoogle Scholar
  19. 19.
    Alenius S, Ruotsalainen U. Bayesian image reconstruction for emission tomography based on medium root prior. Eur J Nul Med 1997;24:258-65.Google Scholar
  20. 20.
    Farkash G, Kenig K, Grabnic M, Yuzefovich B, Sachs J, Bocher M. Volumetric quantitation of left ventricular perfusion and function from myocardial perfusion SPECT: Validation of a new algorithm [abstract]. J Nucl Cardiol 2006;13:S5.CrossRefGoogle Scholar
  21. 21.
    Chen J, Garcia EV, Folks RD, Cooke CD, Faber TL, Tauxe L, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: Development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol 2005;12:687-95.PubMedCrossRefGoogle Scholar
  22. 22.
    Henneman MM, Chen J, Ypenburg C, Dibbets P, Bleeker GB, Boersma E, et al. Phase analysis of gated myocardial perfusion single-photon emission computed tomography compared with tissue Doppler imaging for the assessment of left ventricular dyssynchrony. J Am Coll Cardiol 2007;49:1708-14.PubMedCrossRefGoogle Scholar
  23. 23.
    Henneman MM, Chen J, Dibbets-Schneider P, Stokkel MP, Bleeker GB, Ypenburg C, et al. Can LV dyssynchrony as assessed with phase analysis on gated myocardial perfusion SPECT predict response to CRT? J Nucl Med 2007;48:1104-11.PubMedCrossRefGoogle Scholar
  24. 24.
    Heydari B, Jerosch-Herold M, Kwong R. Imaging for planning of cardiac resynchronization therapy. J Am Coll Cardiovasc Imaging 2012;5:93-110.CrossRefGoogle Scholar
  25. 25.
    Liu YH, Lam PT, Sinusas AJ, Wackers FJT. Different effect of 180° and 360° acquisition orbits on the accuracy of SPECT imaging: Quantitative evaluation of phantoms. J Nucl Med 2002;43:1115-24.PubMedGoogle Scholar
  26. 26.
    Abufadel A, Eisner RL, Schafer RW. Differences due to collimator blurring in cardiac images with use of circular and elliptical orbits. J Nucl Cardiol 2001;8:458-65.PubMedCrossRefGoogle Scholar
  27. 27.
    Bai C, Conwell R, Kindem J, Babla H, Gurley M, De Los Santos R, et al. Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans. J Nucl Cardiol 2010;17:459-69.PubMedCrossRefGoogle Scholar
  28. 28.
    Vija AH, Malmin R, Yahil A, Zeintl J, Bhattacharya M, Rempel TD, et al. A method for improving the efficiency of myocardial perfusion imaging using conventional SPECT and SPECT/CT imaging systems. Hoffman Estates: Molecular Imaging, Siemens Medical Solution USA, Inc; 2010.Google Scholar
  29. 29.
    Rajaram R, Bhattacharya M, Ding X, Malmin R, Rempel TD, Vija H, et al. Tomographic performance characteristics of the IQ-SPECT system. Hoffman Estates: Molecular Imaging, Siemens Medical Solution USA, Inc; 2011.Google Scholar
  30. 30.
    Zeintl J, Rempel TD, Bhattacharya M, Malmin RE, Vija AH. Performance characteristics of the SMARTZOOM® collimator. Hoffman Estates: Molecular Imaging, Siemens Medical Solution USA, Inc; 2011.Google Scholar
  31. 31.
    Corbett J, Meden J, Ficaro E. Clinical validation of attenuation corrected cardiac imaging with IQ-SPECT/CT [abstract]. J Nucl Med 2010;4:733.Google Scholar
  32. 32.
    Gambhir SS, Berman DS, Ziffer J, Nagler M, Sandler M, Patton J, et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med 2009;50:635-43.PubMedCrossRefGoogle Scholar
  33. 33.
    Esteves FP, Raggi P, Folks RD, Keidar Z, Askew W, Rispler S, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: Multicenter comparison with standard dual detector cameras. J Nucl Cardiol 2009;16:927-34.PubMedCrossRefGoogle Scholar
  34. 34.
    Blevis I, Tsukerman L, Volokh L, Hugg J, Jansen F, Bouhnik JP. CZT gamma camera with pinhole collimator: Spectral measurements. In 2008 IEEE nuclear science symposium conference record. ISBN: 978-1-4244-2715-4/08.Google Scholar
  35. 35.
    Erlandsson K, Kacperski K, Van Gramberg D, Hutton B. Performance evaluation of D-SPECT: A novel dedicated cardiac SPECT scanner. Phys Med Biol 2009;54:2635-49.PubMedCrossRefGoogle Scholar
  36. 36.
    Hutton B, Erlandsson K, Kacperski K, Van Gramberg D, Roth N. Performance evaluation of D-SPCT—a novel dedicated cardiac SPECT scanner. J Nucl Med 2008;49:124P.Google Scholar
  37. 37.
    Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: Design, system validation and future potential. Eur J Nucl Med Mol Imaging 2010;37:1887–902.PubMedCrossRefGoogle Scholar
  38. 38.
    Gambhir SS, Berman DS, Ziffer J, Nagler M, Sandler M, Patton J, et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med 2009;50:635-43 (On line supplemental material).PubMedCrossRefGoogle Scholar
  39. 39.
    Hillel I, Hanney M, Redgate S, Taylor J, Randall D. Assessing the performance of a solid-state cardiac gamma camera prior to its introduction into routine clinical service. J Nucl Med 2011;52:1937.Google Scholar
  40. 40.
    Basso D, Passmore G, Holman M, Rogers W, Walters L, Zecchin T, et al. Semiqualitative visual and quantitative morphometric evaluations of reduced scan time and wide-beam reconstruction in rest-gated stress SPECT myocardial perfusion imaging. J Nucl Med Technol 2009;37:233-9.PubMedCrossRefGoogle Scholar
  41. 41.
    Marcassa C, Campini R, Zoccarato O, Calza P. Wide beam reconstruction for half-dose or half-time cardiac gated SPECT acquisitions: Optimization of resources and reduction in radiation exposure. Eur J Nucl Med 2010;38:499-508.CrossRefGoogle Scholar
  42. 42.
    Druz R, Phillips L, Chugkowski M, Boutis L, Rutkin B, Katz B. Wide-beam reconstruction half-time SPECT improves diagnostic certainty and preserves normalcy and accuracy: A quantitative perfusion analysis. J Nucl Cardiol 2011;18:52-61.PubMedCrossRefGoogle Scholar
  43. 43.
    Venero CV, Heller GV, Bateman TM, McGhie AI, Ahlberg AW, Katten D, et al. A multicenter evaluation of a new post-processing method with depth-dependent collimator resolution applied to full-time and half-time acquisitions without and with simultaneously acquired attenuation correction. J Nucl Cardiol 2009;16:714-25.PubMedCrossRefGoogle Scholar
  44. 44.
    Cullom SJ, Saha K, Heller GV, Bateman TV. An optimized iterative reconstruction and processing protocol for “half-time” (32 projections) REST/STRESS Tc99m-sestamibi myocardial perfusion SPECT. J Nucl Cardiol 2008;15:S6.CrossRefGoogle Scholar
  45. 45.
    DePuey EG, Bommireddipalli S, Clark J, Thompson L, Srour Y. Wide beam reconstruction “quarter-time” gated myocardial perfusion SPECT functional imaging: A comparison to “full-time” ordered subset expectation maximum. J Nucl Cardiol 2009;16:736-52.PubMedCrossRefGoogle Scholar
  46. 46.
    DePuey EG, Bommireddipalli S, Clark J, Leykekhman A, Thompson LB, Friedman M. A comparison of the image quality of full-time myocardial perfusion SPECT versus wide beam reconstruction half-time and half-dose SPECT. J Nucl Cardiol 2011;18:273-80.PubMedCrossRefGoogle Scholar
  47. 47.
    Maddahi J, Mendez R, Mahmarian J, Thomas G, Bai C, Babla H, et al. Prospective multi-center evaluation of rapid gated SPECT myocardial perfusion and upright imaging. J Nucl Cardiol 2009;16:351-7.PubMedCrossRefGoogle Scholar
  48. 48.
    Sharir T, Ben-Haim S, Merzon K, Prochorov V, Dickman D, Ben-Haim S, et al. High-speed myocardial perfusion imaging: Initial clinical comparison with conventional dual detector anger camera imaging. J Am Coll Cardiol Imaging 2008;1:156-63.Google Scholar
  49. 49.
    Sharir T, Slomka PJ, Hayes SW, DiCarli MF, Ziffer JA, Martin WH, et al. Multicenter trial of high-speed versus conventional single-photon emission computed tomography imaging: Quantitative of myocardial perfusion and left ventricular function. J Am Coll Cardiol 2010;55:1965-74.PubMedCrossRefGoogle Scholar
  50. 50.
    Buechel RR, Herzog BA, Husmann L, et al. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: First clinical validation. Eur J Nucl Med Mol Imaging 2010;37:773-8.PubMedCrossRefGoogle Scholar
  51. 51.
    Herzog BA, Buechel RR, Katz R, et al. Nuclear myocardial perfusion imaging with a cadmium-zinc-telluride detector technique; optimized protocol for scan time reduction. J Nucl Med 2010;51:46-51.PubMedCrossRefGoogle Scholar
  52. 52.
    Duvall WL, Croft LB, Godiwala T, Ginsberg E, George T, Henzlova MJ. Reduced isotope dose with rapid SPECT MPI imaging: Initial experience with a CZT SPECT camera. J Nucl Cardiol 2010;17:1009-14.PubMedCrossRefGoogle Scholar
  53. 53.
    Buechel RR, Pazhenkottil AP, Herzog BA, et al. Real-time breath-hold triggering of myocardial perfusion imaging with a novel cadmium-zinc-telluride detector gamma camera. Eur J Nucl Med Mol Imaging 2010;37:1903-8.PubMedCrossRefGoogle Scholar
  54. 54.
    Pazhenkottil AP, Buechel RR, Herzog BA, et al. Ultrafast assessment of left ventricular dyssynchrony from nuclear myocardial perfusion imaging on a new high-speed gamma camera. Eur J Nucl Med Mol Imaging 2010;37:2086-92.PubMedCrossRefGoogle Scholar
  55. 55.
    Herzog BA, Buechel RR, Husmann L, et al. Validation of CT attenuation correction for high-speed myocardial perfusion imaging using a novel cadmium-zinc-telluride detector technique. J Nucl Med 2010;51:1539-44.PubMedCrossRefGoogle Scholar
  56. 56.
    Pazhenkottil AP, Husmann L, Kaufmann PA. Cardiac hybrid imaging with high-speed single-photon emission computed tomography/CT camera to detect ischemia and coronary artery obstruction. Heart 2010;96:2050.PubMedCrossRefGoogle Scholar
  57. 57.
    Berman DS, Kang X, Tamarappoo B, Wolak A, Hayes SW, Nakazato R, et al. Stress thallium-201/rest technetium-99m sequential dual isotope high-speed myocardial perfusion imaging. JACC Cardivasc Imaging 2009;2:273-82.CrossRefGoogle Scholar
  58. 58.
    Ben-Haim S, Kacperski K, Hain S, Van Gramberg D, Hutton BF, Erlandsson K, et al. Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera. Eur J Nucl Med Mol Imaging 2010;37:1710-21.PubMedCrossRefGoogle Scholar
  59. 59.
    Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol 2009;54:150-6.PubMedCrossRefGoogle Scholar
  60. 60.
    Chang SM, Nabi F, Xu J, Raza U, Mahmarian JJ. Normal stress-only versus standard stress/rest myocardial perfusion imaging. J Am Coll Cardiol 2010;55:221-30.PubMedCrossRefGoogle Scholar
  61. 61.
    DePuey G, Ata P, Wray R. 5 mCi stress myocardial perfusion SPECT with a conventional NaI camera [abstract]. J Nucl Med (submitted).Google Scholar
  62. 62.
    Heller GV, Bateman TM, Johnson LL, Cullom SJ, Case JA, Galt JR, et al. Clinical value of attenuation correction in stress-only Tc-99m sestamibi SPECT imaging. J Nucl Cardiol 2004;11:273-81.PubMedCrossRefGoogle Scholar
  63. 63.
    Bateman TM, Heller GV, McGhie AI, Courter SA, Golub RA, Case JA, et al. Multicenter investigation comparing a highly efficient half-time stress-only attenuation correction approach against standard rest-stress Tc-99m SPECT imaging. J Nucl Cardiol 2009;16:726-35.PubMedCrossRefGoogle Scholar
  64. 64.
    Taillefer R, DePuey EG, Udelson JE, Beller GA, Benjamin C, Gagnon A. Comparison between the end-diastolic images and the summed images of 99m-Tc sestamibi gated SPECT perfusion study in detection of coronary artery disease in women. J Nucl Cardiol 1999;6:169-76.PubMedCrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2012

Authors and Affiliations

  1. 1.St. Luke’s Hospital, Nuclear MedicineNew YorkUSA

Personalised recommendations