Advertisement

Journal of Nuclear Cardiology

, Volume 19, Issue 4, pp 670–680 | Cite as

Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease?

  • Maria C. ZiadiEmail author
  • Robert A. deKemp
  • Kathryn Williams
  • Ann Guo
  • Jennifer M. Renaud
  • Benjamin J. W. Chow
  • Ran Klein
  • Terrence D. Ruddy
  • May Aung
  • Linda Garrard
  • Rob S. B. Beanlands
Original Article

Abstract

Background

Relative myocardial perfusion imaging (MPI) is the standard imaging approach for the diagnosis and prognostic work-up of coronary artery disease (CAD). However, this technique may underestimate the extent of disease in patients with 3-vessel CAD. Positron emission tomography (PET) is also able to quantify myocardial blood flow. Rubidium-82 (82Rb) is a valid PET tracer alternative in centers that lack a cyclotron. The aim of this study was to assess whether assessment of myocardial flow reserve (MFR) measured with 82Rb PET is an independent predictor of severe obstructive 3-vessel CAD.

Methods

We enrolled a cohort of 120 consecutive patients referred to a dipyridamole 82Rb PET MPI for evaluation of ischemia neither with prior coronary artery bypass graft nor with recent percutaneous coronary intervention that also underwent coronary angiogram within 6 months of the PET study. Patients with and without 3-vessel CAD were compared.

Results

Among patients with severe 3-vessel CAD, MFR was globally reduced (<2) in 88% (22/25). On the adjusted logistic Cox model, MFR was an independent predictor of 3-vessel CAD [.5 unit decrease, HR: 2.1, 95% CI (1.2-3.8); P = .015]. The incremental value of 82Rb MFR over the SSS was also shown by comparing the adjusted SSS models with and without 82Rb MFR (P = .005).

Conclusion

82Rb MFR is an independent predictor of 3-vessel CAD and provided added value to relative MPI. Clinical integration of this approach should be considered to enhance detection and risk assessment of patients with known or suspected CAD.

Key Words

Rubidium-82 PET myocardial flow reserve detection of multivessel disease clinical utility 

Notes

Acknowledgments

RSBB is a Career Investigator supported by the Heart and Stroke Foundation of Ontario (HSFO). MCZ was a Research Fellow supported by University of Ottawa International Fellowship Award and, the Molecular Function and Imaging Program (HSFO Grant # PRG6242). BC is supported by a CIHR New Investigator Award #MSH-83718. The authors thank the staff in the PET unit for their dedication to patient care and research.

Conflict of interest

RdK, JR, and RK receive revenue shares from the sale of FlowQuant, the analysis software used in the study. RB, RdK, and RK are consultants with DraxImage. RB and RdK have received grant funding from a government/industry program (partners: GEHealthcare and MDSNordion). TDR received grant support and honoraria from GE Healthcare and MDS Nordion. RB is a consultant with Lantheus Medical Imaging. Benjamin Chow receives research support from GE Healthcare, Pfizer Inc and AstraZeneca, fellowship training support from GE Healthcare and educational support from TeraRecon Inc.

References

  1. 1.
    Camici PG, Crea F. Coronary microvascular dysfunction. N Eng J Med 2007;356:830-40.CrossRefGoogle Scholar
  2. 2.
    deKemp RA, Beanlands RS, Yoshinaga K. Will 3-dimensional PET-CT enable the routine quantification of myocardial blood flow? J Nucl Cardiol 2007;14:380-97.PubMedCrossRefGoogle Scholar
  3. 3.
    Ziadi MC, deKemp RA, Yoshinaga K, Beanlands RS. Diagnosis and prognosis in cardiac disease using cardiac PET perfusion imaging. In: Zaret BL, Beller GA, editors. Clinical nuclear cardiology. 4th ed. Philadelphia: Elsevier; 2010.Google Scholar
  4. 4.
    Berman D, Friedman JD, Germano G, et al. Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. J Nucl Cardiol 2007;14:521-8.PubMedCrossRefGoogle Scholar
  5. 5.
    Lima R, Watson D, Beller GA, et al. Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol 2003;42:64-70.PubMedCrossRefGoogle Scholar
  6. 6.
    Parkash R, deKemp RA, Beanlands RS, et al. Potential utility of rubidium-82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol 2004;11:440-9.PubMedCrossRefGoogle Scholar
  7. 7.
    Di Carli MF, Dorbala S, Kwong R, et al. Relationship between CT coronary angiography and stress perfusion imaging in patients with suspected ischemic heart disease assessed by integrated PET-CT imaging. J Nucl cardiol 2007;14:799-809.PubMedCrossRefGoogle Scholar
  8. 8.
    Beller GA. Underestimation of coronary artery disease with SPECT perfusion imaging. J Nucl Cardiol 2008;15:151-3.PubMedCrossRefGoogle Scholar
  9. 9.
    Herzog BA, Husmann L, Kaufmann PA, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion PET: Added value of coronary flow reserve. J Am Coll Cardiol 2009;54:150-6.PubMedCrossRefGoogle Scholar
  10. 10.
    Lautamaki R, George RT, Kitagawa K, Voicu C, et al. Rubidium-82 PET-CT for quantitative assessment of myocardial blood flow: Validation in a canine model of coronary artery stenosis. Eur J Nucl Med Mol Imaging 2009;36:576-86.PubMedCrossRefGoogle Scholar
  11. 11.
    Anagnostopoulos C, Dorbala S, Di Carli MF, et al. Quantitative relationship between coronary vasodilator reserve assessed by 82-Rb PET imaging and coronary artery stenosis severity. Eur J Nucl Med Mol Imaging 2008;35:1593-601.PubMedCrossRefGoogle Scholar
  12. 12.
    Lortie M, Beanlands RS, deKemp RA, Yoshinaga K, et al. Quantification of myocardial blood flow with 82-Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34:1765-74.PubMedCrossRefGoogle Scholar
  13. 13.
    El Fakhri G, Dorbala S, Di Carli MF, et al. Reproducibility and accuracy of quantitative myocardial blood flow assessment with 82Rb PET: Comparison with 13N-ammonia PET. J Nucl Med 2009;50:1062-71.PubMedCrossRefGoogle Scholar
  14. 14.
    Klein R, Renaud JM, Ziadi MC, Thorn SL, Adler A, Beanlands RS, deKemp RA. Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using Rubdium-82 PET and a highly automated analysis program. J Nucl Cardiol 2010;17:600-16.PubMedCrossRefGoogle Scholar
  15. 15.
    Dilsizian V, Bacharach SL, Beanlands RSB, Schelbert HR, et al. Imaging guidelines for nuclear cardiology procedures: PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol 2009;16:651.CrossRefGoogle Scholar
  16. 16.
    Henzlova MJ, Cerqueira MD, Hansen CL, Taillefer R, Yao S. Imaging guidelines for nuclear cardiology procedures: stress protocols and tracers. J Nucl Cardiol 2006;13(6):e80-90.PubMedCrossRefGoogle Scholar
  17. 17.
    Schepis T, Gaemperli O, Adachi I, Alkadhi H, Kaufmann PA, et al. Absolute quantification of myocardial blood flow with 13N-ammonia and 3-dimensional PET. J Nucl Med 2007;48:1783-9.PubMedCrossRefGoogle Scholar
  18. 18.
    Klein R, deKemp RA, Beanlands RS, et al. Precision-controlled elution of a 82Sr/82Rb generator for cardiac perfusion imaging with positron emission tomography. Phys Med Biol 2007;52:659-73.PubMedCrossRefGoogle Scholar
  19. 19.
    deKemp RA, Nahmias C. Automated determination of the left ventricular long axis in cardiac positron emission tomography. Physiol Meas 1996;17:95-108.PubMedCrossRefGoogle Scholar
  20. 20.
    Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-42.PubMedCrossRefGoogle Scholar
  21. 21.
    Yoshinaga K, Chow BJ, deKemp RA, Beanlands R, et al. What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol 2006;48:1029-39.PubMedCrossRefGoogle Scholar
  22. 22.
    Dorbala S, Kwong R, Di Carli MF, et al. Value of left ventricular ejection fraction reserve in assessment of severe left main/three-vessel coronary artery disease: a Rubidium-82 PET-CT Study. J Nucl Med 2007;48:349-58.PubMedGoogle Scholar
  23. 23.
    Dorbala S, Hachamovitch R, Kwong RY, Di Carli MF, et al. Incremental prognostic value of gated Rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest LVEF. JACC Cardiovasc Imaging 2009;2:846-54.PubMedCrossRefGoogle Scholar
  24. 24.
    Gewirtz H, Fischman AJ, Abraham S, Alpert NM, et al. Positron emission tomographic measurements of absolute regional myocardial blood flow permits identification of nonviable myocardium in patients with chronic myocardial infarction. J Am Coll Cardiol 1994;23:851-9.PubMedCrossRefGoogle Scholar
  25. 25.
    Gibbons RJ, Balady GJ, Bricker JT, et al. American College of Cardiology/American Heart Association Task Force on practice guidelines. ACC/AHA guideline update for exercise testing. Circulation 2002;106:1883-92.PubMedCrossRefGoogle Scholar
  26. 26.
    Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol 2007;165:710-8.PubMedCrossRefGoogle Scholar
  27. 27.
    Tio R, van Veldhuisen DJ, Zijlstra F, Slart RH, et al. Comparison between the prognostic value of left ventricular function and myocardial perfusion reserve in patients with ischemic heart disease. J Nucl Med 2009;50:214-9.PubMedCrossRefGoogle Scholar
  28. 28.
    Kajander S, Joutsiniemi E, Saraste M, Pietilä M, Ukkonen H, Saraste Mäki M, Airaksinen J, Hartiala J, Knuuti J, et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation 2010;122:603-13.PubMedCrossRefGoogle Scholar
  29. 29.
    Shi H, Santana CA, Garcia EV, et al. Normal values and prospective validation of transient ischaemic dilation index in 82-Rb PET myocardial perfusion imaging. Nucl Med Commun 2007;28:859-63.PubMedCrossRefGoogle Scholar
  30. 30.
    Akinboboye OO, Sciacca RR, Bergmann SR, et al. Absolute quantification of coronary steal induced by intravenous dipyridamole. J Am Coll Cardiol 2001;37:109-16.PubMedCrossRefGoogle Scholar
  31. 31.
    Dayanikli F, Grambow D, Muzik O, Mosca L, Rubenfire M, Schwaiger M. Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation 1994;90:808-17.PubMedCrossRefGoogle Scholar
  32. 32.
    Curillova Z, Yaman BF, Dorbala S, Di Carli MF, et al. Quantitative relationship between coronary calcium content and coronary flow reserve as assessed by integrated PET/CT imaging. Eur J Nucl Med Mol Imaging 2009;36:1603-10.PubMedCrossRefGoogle Scholar
  33. 33.
    Hajjiri MM, Leavitt MB, Gewirtz H, et al. Comparison of positron emission tomography measurement of adenosine-stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological assessment of coronary artery stenosis severity and location. Eur J Nucl Med Mol Imaging 2009;2:751-8.Google Scholar

Copyright information

© American Society of Nuclear Cardiology 2012

Authors and Affiliations

  • Maria C. Ziadi
    • 1
    • 2
    • 3
    Email author
  • Robert A. deKemp
    • 1
    • 2
  • Kathryn Williams
    • 2
  • Ann Guo
    • 1
    • 2
  • Jennifer M. Renaud
    • 1
    • 2
  • Benjamin J. W. Chow
    • 1
    • 2
  • Ran Klein
    • 1
    • 2
  • Terrence D. Ruddy
    • 1
    • 2
  • May Aung
    • 1
    • 2
  • Linda Garrard
    • 1
    • 2
  • Rob S. B. Beanlands
    • 1
    • 2
  1. 1.Division of Cardiology, National Cardiac PET CentreUniversity of Ottawa Heart InstituteOttawaCanada
  2. 2.Cardiovascular Research Methods CentreUniversity of Ottawa Heart InstituteOttawaCanada
  3. 3.Oroño Medical Diagnostic CenterRosario, Santa FeArgentina

Personalised recommendations