Journal of Nuclear Cardiology

, Volume 19, Issue 1, pp 142–152 | Cite as

Use of cardiac radionuclide imaging to identify patients at risk for arrhythmic sudden cardiac death

Review Article

Abstract

Sudden cardiac death (SCD) accounts for about ½ of all cardiovascular deaths, in most cases the result of a lethal ventricular arrhythmia. Patients considered at risk are often treated with an implantable cardiac defibrillator (ICD), but current criteria for device use, based largely on left ventricular ejection fraction (LVEF), leads to many patients receiving ICDs that they do not use, and many others not receiving ICDs but who suffer SCD. Thus, better methods of identifying patients at risk for SCD are needed, and radionuclide imaging offers much potential. Recent work has focused on imaging of cardiac autonomic innervation. 123I-mIBG, a norepinephrine analog, is the tracer most studied, and a variety of positron emission tomographic tracers are also under investigation. Radionuclide autonomic imaging may identify at-risk patients with ischemic coronary artery disease, particularly following myocardial infarction and in the setting of hibernating myocardium. Most studies have been done in the setting of congestive heart failure (CHF), with a recent large multicenter study of patients with advanced disease, typically at high risk of SCD, showing that 123I-mIBG can identify a low risk subgroup with an extremely low incidence of lethal ventricular arrhythmias and cardiac death, therefore, perhaps not requiring an ICD. Cardiac neuronal imaging has been shown to be better predictive of lethal arrhythmias/cardiac death than LVEF and New York Heart Association class, as well as various ECG parameters. Autonomic imaging will likely play an important role in the advancement of cardiac molecular imaging.

Keywords

Sudden cardiac death cardiac autonomic imaging 123I-mIBG 

References

  1. 1.
    Goldberger JJ, Cain ME, Hohnloser SH, Kadish AH, Knight BP, Lauer MS, et al. American Heart Association /American College of Cardiology Foundation/Heart Rhythm Society scientific statement on noninvasive risk stratification techniques for identifying patients at risk for sudden cardiac death: A scientific statement form the American Heart Association Council on Clinical Cardiology Committee on Electrocardiography and Arrhythmias and Council on Epidemiology and Prevention. J Am Coll Cardiol 2008;52:1179-99.PubMedCrossRefGoogle Scholar
  2. 2.
    Myerburg RJ, Castellanos RJ. Cardiac arrest and sudden cardiac death. In: Libby P, Bonow RO, Mann DL, Zipes DP, Braunwald E, editors. Heart disease: A textbook of cardiovascular medicine. 8th ed. Philadelphia: Saunders Elsevier; 2008. p. 733.Google Scholar
  3. 3.
    Exner DV, Klein GJ, Prystowsky EN. Primary prevention of sudden death with implantable defibrillator therapy in patients with cardiac disease. Can we afford to do it? (Can we afford not to?). Circulation 2001;104:1564-70.PubMedCrossRefGoogle Scholar
  4. 4.
    Bayés de Luna A, Coumel P, Leclercq JF. Ambulatory sudden cardiac death: Mechanisms of production of fatal arrhythmia on the basis of data from 157 cases. Am Heart J 1989;117:151-9.PubMedCrossRefGoogle Scholar
  5. 5.
    Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, et al. Writing on behalf of the 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure ion the Adult Writing Committee. 2009 focused update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults: A report of the American College of Cardiology/American heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2009;53:1343-82.CrossRefGoogle Scholar
  6. 6.
    Buxton AE, Lee KL, Hafley GE, Pires LA, Fisher JD, Gold MR, et al. Limitations of ejection fraction for prediction of sudden death risk in patients with coronary artery disease: Lessons from the MUSTT study. J Am Coll Cardiol 2007;50:1150-7.PubMedCrossRefGoogle Scholar
  7. 7.
    Huikuri HV, Castellanos A, Myerburg RJ. Sudden death due to cardiac arrhythmias. N Engl J Med 2001;345:1473-82.PubMedCrossRefGoogle Scholar
  8. 8.
    Piccini JP, Horton JR, Shaw LK, Al-Khatib SM, Lee KL, Iskandrian AE, et al. Single-photon emission computed tomography myocardial perfusion defects are associated with an increased risk of all-cause death, cardiovascular death, and sudden cardiac death. Circ Cardiovasc Imaging 2008;1:180-8.PubMedCrossRefGoogle Scholar
  9. 9.
    Piccini JP, Starr AZ, Horton JR, Shaw LK, Lee KL, Al-Khatib SM, et al. Single-photon emission computed tomography myocardial perfusion imaging and the risk of sudden cardiac death in patients with coronary disease and left ventricular ejection fraction > 35%. J Am Coll Cardiol 2010;56:206-14.PubMedCrossRefGoogle Scholar
  10. 10.
    Rudd JH, Narula J, Strauss HW, Virmani R, Machac J, Klimas M, et al. Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: Ready for prime time? J Am Coll Cardiol 2010;55:2527-35.PubMedCrossRefGoogle Scholar
  11. 11.
    Chou CC, Zhou S, Hayashi H, Nihei M, Liu YB, Wen MS, et al. Remodelling of action potential and intracellular calcium cycling dynamics during subacute myocardial infarction promotes ventricular arrhythmias in langendorff-perfused rabbit hearts. J Physiol 2007;580:895-906.PubMedCrossRefGoogle Scholar
  12. 12.
    Naud P, Guasch E, Nattel S. Physiological versus pathological cardiac electrical remodelling: Potential basis and relevance to clinical management. J Physiol 2010;588:4855-6.PubMedCrossRefGoogle Scholar
  13. 13.
    Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson J. Left ventricular remodeling in heart failure: Current concepts in clinical significance and assessment. J Am Coll Cardiol Imaging 2011;4:98-108.Google Scholar
  14. 14.
    Hohnloser SH, Kuck KH, Dorian P, Roberts RS, Hampton JR, Hatala R, et al. Prophylactic use of an implantable cardioverter-defibrillator after acute myocardial infarction. N Engl J Med 2004;351:2481-8.PubMedCrossRefGoogle Scholar
  15. 15.
    Wilber DJ, Zareba W, Hall WJ, Brown MW, Lin AC, Andrews ML, et al. Time dependence of mortality risk and defibrillator benefit after myocardial infarction. Circulation 2004;109:1082-4.PubMedCrossRefGoogle Scholar
  16. 16.
    Adabag AS, Therneau TM, Gersh BJ, Weston SA, Roger VL. Sudden death after myocardial infarction. JAMA 2008;300:2022-9.PubMedCrossRefGoogle Scholar
  17. 17.
    Moss AJ, Vyas A, Greenberg H, Case RB, Zareba W, Hall WJ, et al. Temporal aspects of improved survival with the implanted defibrillator (MADIT-II). Am J Cardiol 2004;94:312-5.PubMedCrossRefGoogle Scholar
  18. 18.
    Piccini JP, Zhang M, Pieper K, Solomon SD, Al-Khatib SM, Van de Werf F, et al. Predictors of sudden cardiac death change with time after myocardial infarction: Results from the VALIANT trial. Eur Heart J 2010;31:211-21.PubMedCrossRefGoogle Scholar
  19. 19.
    Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res 2004;95:754-63.PubMedCrossRefGoogle Scholar
  20. 20.
    Zipes DP, Wellens HJ. Sudden cardiac death. Circulation 1998;98:2334-51.PubMedGoogle Scholar
  21. 21.
    Goldberger JJ, Passman R. Implantable cardioverter-defibrillator therapy after acute myocardial infarction. The results are not shocking. J Am Coll Cardiol 2009;54:2001-5.PubMedCrossRefGoogle Scholar
  22. 22.
    Fallavollita JA, Canty JM Jr. Dysinnervated but viable myocardium in ischemic heart disease. J Nucl Cardiol 2010;17:1107-15.PubMedCrossRefGoogle Scholar
  23. 23.
    Barron HV, Lesh MD. Autonomic nervous system and sudden cardiac death. J Am Coll Cardiol 1996;27:1053-60.PubMedCrossRefGoogle Scholar
  24. 24.
    Verrier RL, Antzelevich C. Autonomic aspects of arrhythmogenesis: The enduring and the new. Curr Opin Cardiol 2003;19:2-11.CrossRefGoogle Scholar
  25. 25.
    Ji SY, Travin MI. Radionuclide imaging of cardiac autonomic innervation. J Nucl Cardiol 2010;17:655-66.PubMedCrossRefGoogle Scholar
  26. 26.
    Chirumamilla A, Travin MI. Cardiac applications of 123I-mIBG imaging. Semin Nucl Med 2011;41:374-87.PubMedCrossRefGoogle Scholar
  27. 27.
    Yu M, Bozek J, Lamoy M, Guaraldi M, Silva P, Kagan M, et al. Evaluation of LMI1195, a novel 18F-labeled cardiac neuronal PET imaging agent, in cells and animal models. Circ Cardiovasc Imaging 2011;4:435-43.PubMedCrossRefGoogle Scholar
  28. 28.
    Sisson JC, Wieland DM. Radiolabelled meta-iodobenzylguanidine pharmacology: Pharmacology and clinical studies. Am J Physiol Imaging 1986;1:96-103.PubMedGoogle Scholar
  29. 29.
    Flotats A, Carrio I. Cardiac neurotransmission SPECT imaging. J Nucl Cardiol 2004;11:587-602.PubMedCrossRefGoogle Scholar
  30. 30.
    Bengel FM, Schwaiger M. Assessment of cardiac sympathetic neuronal function using PET imaging. J Nucl Cardiol 2004;11:603-16.PubMedCrossRefGoogle Scholar
  31. 31.
    Hattori N, Schwaiger M. Metaiodobenzylguanidine scintigraphy of the heart: What have we learnt clinically? Eur J Nucl Med 2000;27:1-6.PubMedCrossRefGoogle Scholar
  32. 32.
    Travin MI. Cardiac neuronal imaging at the edge of clinical application. Cardiol Clin 2009;27:311-27.PubMedCrossRefGoogle Scholar
  33. 33.
    Agostini D, Verberne HJ, Burchert W, Knuuti J, Povince P, Sambuceti G, et al. I-123-mIBG myocardial imaging for assessment of risk for a major cardiac event in heart failure patients: Insights from a retrospective European multicenter study. Eur J Nucl Med Mol Imaging 2008;35:535-46.PubMedCrossRefGoogle Scholar
  34. 34.
    Jacobson AF, Lombard J, Banerjee G, Camici PG. 123I-mIBG scintigraphy to predict risk for adverse cardiac outcomes in heart failure patients: Design of two prospective multicenter international trials ADMIRE-HF study. J Nucl Cardiol 2009;16:113-21.PubMedCrossRefGoogle Scholar
  35. 35.
    Flotats A, Carrió I, Agostini D, et al. Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging 2010;37:1802-12.PubMedCrossRefGoogle Scholar
  36. 36.
    Morozumi T, Kusuoka H, Fukuchi K, Tani A, Uehara T, Matsuda S, et al. Myocardial iodine-123-metaiodobenzylguanidine images and autonomic nerve activity in normal subjects. J Nucl Med 1997;38:49-52.PubMedGoogle Scholar
  37. 37.
    Ogita H, Shimonagata T, Fukunami M, et al. Prognostic significance of cardiac 123I metaiodobenzylguanidine imaging for mortality and morbidity in patients with chronic heart failure: A prospective study. Heart 2001;86:656-60.PubMedCrossRefGoogle Scholar
  38. 38.
    Minardo JD, Tuli MM, Mock BH, Weiner RE, Pride HP, Wellmann HN, et al. Scintigraphic and electrophysiologic evidence of canine myocardial sympathetic denervation and reinnervation produced by myocardial infarction or phenol application. Circulation 1988;78:1008-19.PubMedCrossRefGoogle Scholar
  39. 39.
    Luisi AJ Jr, Fallavollita JA, Suzuki G, Canty JM Jr. Spatial inhomogeneity of sympathetic nerve function in hibernating myocardium. Circulation 2002;106:779-81.PubMedCrossRefGoogle Scholar
  40. 40.
    Lautamäki R, Tipre D, Bengel FM. Cardiac sympathetic neuronal imaging using PET. Eur J Nucl Med Mol Imaging 2007;34:S74-85.PubMedCrossRefGoogle Scholar
  41. 41.
    Stanton MS, Tuli MM, Radtke NL, Heger JJ, Miles WM, Mock BH, et al. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-Metaiodobenzylguanidine. J Am Coll Cardiol 1989;14:1519-26.PubMedCrossRefGoogle Scholar
  42. 42.
    McGhie AI, Corbett JR, Akers MS, Kulkarni P, Sills MN, Kremers M, et al. Regional cardiac adrenergic function using I-123 Meta-Iodobenzylguanidine tomographic imaging after acute myocardial infarction. Am J Cardiol 1991;67:236-42.PubMedCrossRefGoogle Scholar
  43. 43.
    Henneman MM, Bengel FM, Bax JJ. Will innervation imaging predict ventricular arrhythmias in ischaemic cardiomyopathy? Eur J Nucl Med Mol Imaging 2006;33:862-5.PubMedCrossRefGoogle Scholar
  44. 44.
    Dae MW, Herre JM, O’Connell JW, Botvinick EH, Newman D, Munoz L. Scintigraphic assessment of sympathetic innervation after transmural versus nontransmural myocardial infarction. J Am Coll Cardiol 1991;17:1416-23.PubMedCrossRefGoogle Scholar
  45. 45.
    Matsunari I, Schricke U, Bengel FM, Haase HU, Barthel P, Schmidt G, et al. Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes. Circulation 2000;101:2579-85.PubMedGoogle Scholar
  46. 46.
    Inoue H, Zipes DP. Results of sympathetic denervation in the canine heart: Supersensitivity that may be arrhythmogenic. Circulation 1987;75:877-87.PubMedCrossRefGoogle Scholar
  47. 47.
    Kammerling JJ, Green FJ, Watanabe AM, Inoue H, Barber MJ, Henry DP, et al. Denervation supersensitivity of refractoriness in noninfarcted areas apical to transmural myocardial infarction. Circulation 1987;76:383-93.PubMedCrossRefGoogle Scholar
  48. 48.
    Simões MV, Barthel P, Matsunari I, Nekolla SG, Schomig A, Schwaiger M, et al. Presence of sympathetically denervated but viable myocardium and its electrophysiologic correlates after early revascularised, acute myocardial infarction. Eur Heart J 2004;25:551-7.PubMedCrossRefGoogle Scholar
  49. 49.
    Sasano T, Abraham MR, Chang KC, Ashikaga H, Mills KJ, Holt DP, et al. Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol 2008;51:2266-75.PubMedCrossRefGoogle Scholar
  50. 50.
    Bax JJ, Kraft O, Buxton AE, Fjeld JG, Parizek P, Agostini D, et al. 123 I-MIBG scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing: A prospective multicenter pilot study. Circ Cardiovasc Imaging 2008;1:131-40.PubMedCrossRefGoogle Scholar
  51. 51.
    Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: A meta-analysis. J Am Coll Cardiol 2002;39:1151-8.PubMedCrossRefGoogle Scholar
  52. 52.
    Hartikainen J, Mustonen J, Kuikka J, Vanninen E, Kettunen R. Cardiac sympathetic denervation in patients with coronary artery disease without previous myocardial infarction. Am J Cardiol 1997;80:273-7.PubMedCrossRefGoogle Scholar
  53. 53.
    Luisi AJ Jr, Suzuki G, Dekemp R, Haka MS, Toorongian SA, Canty JM Jr, et al. Regional 11C-Hydroxyephedrine retention in hibernating myocardium: Chronic inhomogeneity of sympathetic innervation in the absence of infarction. J Nucl Med 2005;46:1368-74.PubMedGoogle Scholar
  54. 54.
    Fallavollita JA, Canty JM Jr. Differential 18F-2-Deoxyglucose uptake in viable dysfunctional myocardium with normal resting perfusion: Evidence for chronic stunning in pigs. Circulation 1999;99:2798-805.PubMedGoogle Scholar
  55. 55.
    Canty JM Jr, Suzuki G, Banas MD, Verheyen F, Borgers M, Fallavollita JA. Hibernating myocardium: Chronically adapted to ischemia but vulnerable to sudden death. Circ Res 2004;94:1142-9.PubMedCrossRefGoogle Scholar
  56. 56.
    Bulow HP, Stahl F, Lauer B, Nekolla SG, Schuler G, Schwaiger M, et al. Alterations of myocardial presynaptic sympathetic innervation in patients with multi-vessel coronary artery disease but without history of myocardial infarction. Nucl Med Commun 2003;24:233-9.PubMedCrossRefGoogle Scholar
  57. 57.
    Fallavollita JA, Luisi AJ Jr, Michalek SM, Valverde AM, deKemp RA, Haka MS, et al. Prediction of arrhythmic events with positron emission tomography: PAREPET study design and methods. Contemp Clin Trials 2006;27:374-88.PubMedCrossRefGoogle Scholar
  58. 58.
    Verberne HJ, Brewster LM, Somsen GA, van Eck-Smit BL. Prognostic value of myocardial 123I-Metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: A systematic Review. Eur Heart J 2008;29:1147-59.PubMedCrossRefGoogle Scholar
  59. 59.
    Merlet P, Valette H, Dubois-Randé J, Moyse D, Duboc D, Dove P, et al. Prognostic value of cardiac metaiodobenzylguanidine in patients with heart failure. J Nucl Med 1992;33:471-7.PubMedGoogle Scholar
  60. 60.
    Nakata T, Miyamoto K, Doi A, Sasao H, Wakabayashi T, Kobayashi H, et al. Cardiac death prediction and impaired cardiac sympathetic innervation assessed by MIBG in patients with failing and nonfailing hearts. J Nucl Cardiol 1998;5:579-90.PubMedCrossRefGoogle Scholar
  61. 61.
    Wakabayashi T, Nakata T, Hashimoto A, Yuda S, Tsuchihashi K, Travin MI, et al. Assessment of underlying etiology and cardiac sympathetic innervation to identify patients at high risk of cardiac death. J Nucl Med 2001;42:1757-67.PubMedGoogle Scholar
  62. 62.
    Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 Meta-Iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 2010;55:2212-21.PubMedCrossRefGoogle Scholar
  63. 63.
    Travin M, Ananthasubramaniam K, Henzlova MJ, et al. Imaging of myocardial sympathetic innervation for prediction of cardiac and all-cause mortality in heart failure patients: Analyses from the ADMIRE-HF Trial: Circulation 2009;120:S350 (abstract).Google Scholar
  64. 64.
    Schofer J, Spielmann R, Schuchert A, Weber K, Schlüter M. Iodine-123 meta-iodobenzylguanidine scintigraphy: A noninvasive method to demonstrate myocardial adrenergic nervous system disintegrity in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 1988;12:1252-8.PubMedCrossRefGoogle Scholar
  65. 65.
    Chen GP, Tablblazar R, Branch KR, Link JM, Caldwell JH. Cardiac receptor physiology and imaging: An update. J Nucl Cardiol 2005;12:714-30.PubMedCrossRefGoogle Scholar
  66. 66.
    Bardy GH, Lee KL, Mark DB, et al. Amiodarone or an implantable defibrillator for congestive heart failure. N Engl J Med 2005;352:225-37.PubMedCrossRefGoogle Scholar
  67. 67.
    Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Eng J Med 2004;350:2140-50.CrossRefGoogle Scholar
  68. 68.
    Kadish A, Dyer A, Daubert JP, Quiga R, Estes M, Anderson KP, et al. Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N Engl J Med 2004;350:2151-8.PubMedCrossRefGoogle Scholar
  69. 69.
    Fisher JD, Ector HE. Relative and absolute benefits: Main results should be reported in absolute terms. Pacing Clin Electrophysiol 2007;30:935-7.PubMedCrossRefGoogle Scholar
  70. 70.
    Lee DS, Krahn AD, Healey JS, Birnie D, Crystal E, Dorian P, et al. Evaluation of early complications related to de novo cardioverter defibrillator implantation insights from the Ontario ICD database. J Am Coll Cardiol 2010;55:774-82.PubMedCrossRefGoogle Scholar
  71. 71.
    Anderson KP. Estimates of implantable cardioverter-defibrillator complications Caveat emptor. Circulation 2009;119:1069-71.PubMedCrossRefGoogle Scholar
  72. 72.
    Anderson KP. Risk assessment for defibrillator therapy. J Am Coll Cardiol 2007;50:1158-60.PubMedCrossRefGoogle Scholar
  73. 73.
    Sanders GD, Hlatky MA, Owens DK. Cost-effectiveness of implantable cardioverter-defibrillators. N Engl J Med 2005;353:1471-80.PubMedCrossRefGoogle Scholar
  74. 74.
    Kadish A, Goldberger J. Selecting patients for ICD implantation: Are clinicians choosing appropriately? JAMA 2011;305:91-2.PubMedCrossRefGoogle Scholar
  75. 75.
    Kim SG, Fisher JD, Furman S. Hypothetical death rates of patients with implantable defibrillators remain very hypothetical. Am J Cardiol 1993;72:1453-5.PubMedCrossRefGoogle Scholar
  76. 76.
    Ellenbogen KA, Levine JH, Berger RD, Daubert JP, Winters SL, Greenstein E, et al. Are implantable cardioverter defibrillator shocks a surrogate for sudden cardiac death in patients with nonischemic cardiomyopathy. Circulation 2006;113:776-82.PubMedCrossRefGoogle Scholar
  77. 77.
    Arora R, Ferrick KJ, Nakata T, Kaplan RC, Rozengarten M, Latif F, et al. I-123 MIBG imaging and heart rate variability analysis to predict the need for an implantable cardioverter defibrillator. J Nucl Cardiol 2003;10:121-31.PubMedCrossRefGoogle Scholar
  78. 78.
    Nagahara D, Nakata T, Hashimoto A, Wakabayashi T, Kyuma M, Noda R, et al. Predicting the need for an implantable cardioverter defibrillator using cardiac metaiodobenzylguanidine activity together with plasma natriuretic peptide concentration or left ventricular function. J Nucl Med 2008;49:225-33.PubMedCrossRefGoogle Scholar
  79. 79.
    Nishisato K, Hashimoto A, Nakata T, Doi T, Yamamoto H, Nagahara D, et al. Impaired cardiac sympathetic innervation and myocardial perfusion are related to lethal arrhythmia: Quantification of cardiac tracers in patients with ICDs. J Nucl Med 2010;51:1241-9.PubMedCrossRefGoogle Scholar
  80. 80.
    Kasama S, Toyama T, Sumino H, Nakazawa M, Matsumoto N, Sato Y, et al. Prognostic value of serial cardiac 123I-MIBG imaging in patients with stabilized chronic heart failure and reduced left ventricular ejection fraction. J Nucl Med 2008;49:907-14.PubMedCrossRefGoogle Scholar
  81. 81.
    Tamaki S, Yamada T, Okuyama Y, Morita T, Sanada S, Tsukamoto Y, et al. Cardiac iodine-123 Metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: Results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol 2009;53:426-35.PubMedCrossRefGoogle Scholar
  82. 82.
    Senior R, Agostini D, Travin M, et al. Imaging of myocardial sympathetic innervation for prediction of arrhythmic events in heart failure patients: Insights from the ADMIRE-HF trial. Circulation 2009;120:S349 (abstract).Google Scholar
  83. 83.
    Boogers MJ, Borleffs CJ, Henneman MM, van Bommel RJ, van Ramshorst J, Boersma E, et al. Cardiac sympathetic denervation assessed with 123-Iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol 2010;55:2769-77.PubMedCrossRefGoogle Scholar
  84. 84.
    Mitrani RD, Klein LS, Miles WM, Hackett FK, Burt RW, Wellman HN, et al. Regional cardiac sympathetic denervation in patients with ventricular tachycardia in the absence of coronary artery disease. J Am Coll Cardiol 1993;22:1344-53.PubMedCrossRefGoogle Scholar
  85. 85.
    Gill JS, Hunter GJ, Gane J, Ward DE, Camm AJ. Asymmetry of cardiac [123I] Meta-iodobenzyl-guanidine scans in patients with ventricular tachycardia and a “Clinically Normal” heart. Br Heart J 1993;69:6-13.PubMedCrossRefGoogle Scholar
  86. 86.
    Schäfers M, Lerch H, Wichter T, Rhodes CG, Lammertsma AA, Borggrefe M, et al. Cardiac sympathetic innervation in patients with idiopathic right ventricular outflow tract tachycardia. J Am Coll Cardiol 1198;32:181-6.CrossRefGoogle Scholar
  87. 87.
    Wichter T, Matheja P, Eckardt L, Kies P, Schäfers K, Schulze-Bahr E, et al. Cardiac autonomic dysfunction in Brugada syndrome. Circulation 2002;105:702-6.PubMedCrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2011

Authors and Affiliations

  1. 1.Department of Nuclear MedicineMontefiore Medical Center, Albert Einstein College of MedicineBronxUSA
  2. 2.Division of Cardiology/Department of MedicineMontefiore Medical Center, Albert Einstein College of MedicineBronxUSA

Personalised recommendations