Journal of Nuclear Cardiology

, Volume 18, Issue 4, pp 685–694

SPECT myocardial perfusion imaging for the assessment of left ventricular mechanical dyssynchrony

  • Ji Chen
  • Ernest V. Garcia
  • Jeroen J. Bax
  • Ami E. Iskandrian
  • Salvador Borges-Neto
  • Prem Soman
Major Achievements in Nuclear Cardiology

Abstract

Phase analysis of gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is an evolving technique for measuring LV mechanical dyssynchrony. Since its inception in 2005, it has undergone considerable technical development and clinical evaluation. This article reviews the background, the technical and clinical characteristics, and evolving clinical applications of phase analysis of gated SPECT MPI in patients requiring cardiac resynchronization therapy or implantable cardioverter defibrillator therapy and in assessing LV diastolic dyssynchrony.

Keywords

Myocardial perfusion imaging: SPECT left ventricular function heart failure phase analysis left ventricular dyssynchrony 

References

  1. 1.
    Garcia EV, Faber TL, Cooke CD, Folks RD, Chen J, Santana CA. The increasing role of quantification in clinical nuclear cardiology: The Emory approach. J Nucl Cardiol 2007;14:420-32.PubMedCrossRefGoogle Scholar
  2. 2.
    Germano G, Kavanagh PB, Slomka PJ, Van Kriekinge SD, Pollard G, Berman DS. Quantitation in gated perfusion SPECT imaging: The Cedars-Sinai approach. J Nucl Cardiol 2007;14:433-54.PubMedCrossRefGoogle Scholar
  3. 3.
    Ficaro EP, Lee BC, Kritzman JN, Corbett JR. Corridor4DM: The Michigan method for quantitative nuclear cardiology. J Nucl Cardiol 2007;14:455-65.PubMedCrossRefGoogle Scholar
  4. 4.
    Watson DD, Smith WH II. The role of quantitation in clinical nuclear cardiology: The University of Virginia approach. J Nucl Cardiol 2007;14:466-82.PubMedCrossRefGoogle Scholar
  5. 5.
    Liu Y. Quantification of nuclear cardiac images: The Yale approach. J Nucl Cardiol 2007;14:483-91.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen J, Garcia EV, Folks RD, et al. Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: Development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol 2005;12:687-95.PubMedCrossRefGoogle Scholar
  7. 7.
    Galderisi M, Cattaneo F, Mondillo S. Doppler echocardiography and myocardial dyssynchrony: A practical update of old and new ultrasound technologies. Cardiovasc Ultrasound 2007;5:28.PubMedCrossRefGoogle Scholar
  8. 8.
    Nesser HJ, Winter S. Speckle tracking in the evaluation of left ventricular dyssynchrony. Echocardiography 2009;26:324-36.PubMedCrossRefGoogle Scholar
  9. 9.
    Lardo AC, Abraham TP, Kass DA. Magnetic resonance imaging assessment of ventricular dyssynchrony: Current and emerging concepts. J Am Coll Cardiol 2005;46:2223-8.PubMedCrossRefGoogle Scholar
  10. 10.
    Somsen GA, Verberne HJ, Burri H, Ratib O, Righetti A. Ventricular mechanical dyssynchrony and resynchronization therapy in heart failure: A new indication for Fourier analysis of gated blood-pool radionuclide ventriculography. Nucl Med Commun 2006;27:105-12.PubMedCrossRefGoogle Scholar
  11. 11.
    Vilain D, Daou D, Casset-Senon D, et al. Optimal 3-dimensional method for right and left ventricular Fourier phase analysis in electrocardiography-gated blood-pool SPECT. J Nucl Cardiol 2008;15:80-5.CrossRefGoogle Scholar
  12. 12.
    Yu CM, Bax JJ, Gorcsan J III. Critical appraisal of methods to assess mechanical dyssynchrony. Curr Opin Cardiol 2009;24:18-28.PubMedCrossRefGoogle Scholar
  13. 13.
    AlJaroudi W, Chen J, Jaber WA, et al. Non-echocardiographic imaging in evaluation for cardiac resynchronization therapy. Circ Cardiovasc Imaging 2011 (in press).Google Scholar
  14. 14.
    Galt JR, Garcia EV, Robbins WL. Effects of myocardial wall thickness on SPECT quantification. IEEE Trans Med Imaging 1990;9:144-50.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen J, Faber TL, Cooke CD, Garcia EV. Temporal resolution of multiharmonic phase analysis of ECG-gated myocardial perfusion SPECT studies. J Nucl Cardiol 2008;15:383-91.PubMedCrossRefGoogle Scholar
  16. 16.
    Trimble MA, Velazquez EJ, Adams GL, et al. Repeatability and reproducibility of phase analysis of gated SPECT myocardial perfusion imaging used to quantify cardiac dyssynchrony. Nucl Med Commun 2008;29:374-81.PubMedCrossRefGoogle Scholar
  17. 17.
    Chung ES, Leon AR, Tavazzi L, et al. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation 2008;117:2608-16.PubMedCrossRefGoogle Scholar
  18. 18.
    Lin X, Xu H, Zhao X, et al. Repeatability of left ventricular dyssynchrony and function parameters in serial gated myocardial perfusion SPECT studies. J Nucl Cardiol 2010;17:811-6.PubMedCrossRefGoogle Scholar
  19. 19.
    Pazhenkottil AP, Buechel RR, Herzog BA, et al. Ultrafast assessment of left ventricular dyssynchrony from nuclear myocardial perfusion imaging on a new high-speed gamma camera. Eur J Nucl Med Mol Imaging 2010;37:2086-92.PubMedCrossRefGoogle Scholar
  20. 20.
    Li D, Zhou Y, Feng J, et al. Impact of image reconstruction on phase analysis of ECG-gated myocardial perfusion SPECT studies. Nucl Med Commun 2009;30:700-5.PubMedCrossRefGoogle Scholar
  21. 21.
    Aljaroudi W, Koneru J, Heo J, Iskandrian AE. Impact of ischemia on left ventricular dyssynchrony by phase analysis of gated single photon emission computed tomography myocardial perfusion imaging. J Nucl Cardiol 2011;18:36-42.PubMedCrossRefGoogle Scholar
  22. 22.
    Henneman MM, Chen J, Ypenburg C, et al. Phase analysis of gated myocardial perfusion single-photon emission computed tomography compared with tissue Doppler imaging for the assessment of left ventricular dyssynchrony. J Am Coll Cardiol 2007;49:1708-14.PubMedCrossRefGoogle Scholar
  23. 23.
    Marsan NA, Henneman MM, Chen J, et al. Left ventricular dyssynchrony assessed by two three-dimensional imaging modalities: Phase analysis of gated myocardial perfusion SPECT and tri-plane tissue Doppler imaging. Eur J Nucl Med Mol Imaging 2008;35:166-73.PubMedCrossRefGoogle Scholar
  24. 24.
    Trimble MA, Borges-Neto S, Smallheiser S, et al. Evaluation of left ventricular mechanical dyssynchrony as determined by phase analysis of ECG-gated SPECT myocardial perfusion imaging in patients with left ventricular dysfunction and conduction disturbances. J Nucl Cardiol 2007;14:298-307.PubMedCrossRefGoogle Scholar
  25. 25.
    Trimble MA, Borges-Neto S, Honeycutt EF, et al. Evaluation of mechanical dyssynchrony and myocardial perfusion using phase analysis of gated SPECT imaging in patients with left ventricular dysfunction. J Nucl Cardiol 2008;15:663-70.PubMedCrossRefGoogle Scholar
  26. 26.
    Bleeker GB, Schalij MJ, Molhoek SG, et al. Relationship between QRS duration and left ventricular dyssynchrony in patients with end-stage heart failure. J Cardiovasc Electrophysiol 2004;15:544-9.PubMedCrossRefGoogle Scholar
  27. 27.
    AlJaroudi W, Iqbal F, Heo J, Iskandrian AE. Relation between heart rate and left ventricular mechanical dyssynchrony in patients with end-stage renal disease. Am J Cardiol 2011;107:1235-40.CrossRefGoogle Scholar
  28. 28.
    Henneman MM, Chen J, Dibbets-Schneider P, et al. Can LV dyssynchrony as assessed with phase analysis on gated myocardial perfusion SPECT predicts response to CRT? J Nucl Med 2007;48:1104-11.PubMedCrossRefGoogle Scholar
  29. 29.
    Samad Z, Atchley AE, Trimble MA, et al. Prevalence and predictors of mechanical dyssynchrony as defined by phase analysis in patients with left ventricular dysfunction undergoing gated SPECT myocardial perfusion imaging. J Nucl Cardiol 2011;18:24-30.PubMedCrossRefGoogle Scholar
  30. 30.
    Atchley AE, Trimble MA, Samad Z, et al. Use of phase analysis of gated SPECT perfusion imaging to quantify dyssynchrony in patients with mild-to-moderate left ventricular dysfunction. J Nucl Cardiol 2009;16:888-94.PubMedCrossRefGoogle Scholar
  31. 31.
    Pazhenkottil AP, Buechel RR, Husmann L, et al. Long-term prognostic value of left ventricular dyssynchrony assessment by phase analysis from myocardial perfusion imaging. Heart 2011;97:33-7.PubMedCrossRefGoogle Scholar
  32. 32.
    Friehling M, Chen J, Lin X, et al. A novel gated SPECT-based protocol to determine changes in LV synchrony following CRT. J Nucl Cardiol 2010;17:746. (abstracts).Google Scholar
  33. 33.
    Cazeau S, Leclercq C, Lavergne T, et al. Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med 2001;344:873-80.PubMedCrossRefGoogle Scholar
  34. 34.
    Yu CM, Chau E, Sanderson JE, et al. Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure. Circulation 2002;105:438-45.PubMedCrossRefGoogle Scholar
  35. 35.
    Auricchio A, Stellbrink C, Sack S, et al. Long-term clinical effect of hemodynamically optimized cardiac resynchronization therapy in patients with heart failure and ventricular conduction delay. J Am Coll Cardiol 2002;39:2026-33.PubMedCrossRefGoogle Scholar
  36. 36.
    Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med 2002;346:1845-53.PubMedCrossRefGoogle Scholar
  37. 37.
    Young JB, Abraham WT, Smith AL, et al. Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: The MIRACLE ICD Trial. JAMA 2003;289:2685-94.PubMedCrossRefGoogle Scholar
  38. 38.
    Auricchio A, Stellbrink C, Butter C, et al. Clinical efficacy of cardiac resynchronization therapy using left ventricular pacing in heart failure patients stratified by severity of ventricular conduction delay. J Am Coll Cardiol 2003;42:2109-16.PubMedCrossRefGoogle Scholar
  39. 39.
    Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 2004;350:2140-50.PubMedCrossRefGoogle Scholar
  40. 40.
    Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 2005;352:1539-49.PubMedCrossRefGoogle Scholar
  41. 41.
    Epstein AE, DiMarco JP, Ellenbogen KA, et al. ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices): Developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. Circulation 2008;117:e350-408.PubMedCrossRefGoogle Scholar
  42. 42.
    Bax JJ, Van der Wall EE, Schalij MJ. Cardiac resynchronization therapy for heart failure. N Engl J Med 2002;347:1803-4.PubMedCrossRefGoogle Scholar
  43. 43.
    Bax JJ, Bleeker GB, Marwick TH, et al. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol 2004;44:1834-40.PubMedCrossRefGoogle Scholar
  44. 44.
    Yu CM, Fung JW, Zhang Q, et al. Tissue Doppler imaging is superior to strain rate imaging and postsystolic shortening on the prediction of reverse remodeling in both ischemic and nonischemic heart failure after cardiac resynchronization therapy. Circulation 2004;110:66-73.PubMedCrossRefGoogle Scholar
  45. 45.
    Yu CM, Zhang Q, Chan YS, et al. Tissue Doppler velocity is superior to displacement and strain mapping in predicting left ventricular reverse remodelling response after cardiac resynchronisation therapy. Heart 2006;92:1452-6.PubMedCrossRefGoogle Scholar
  46. 46.
    Bax JJ, Marwick TH, Molhoek SG, et al. Left ventricular dyssynchrony predicts benefit of cardiac resynchronization therapy in patients with end-stage heart failure before pacemaker implantation. Am J Cardiol 2003;92:1238-40.PubMedCrossRefGoogle Scholar
  47. 47.
    Yu CM, Fung WH, Lin H, et al. Predictors of left ventricular reverse remodeling after cardiac resynchronization therapy for heart failure secondary to idiopathic dilated or ischemic cardiomyopathy. Am J Cardiol 2003;91:684-8.PubMedCrossRefGoogle Scholar
  48. 48.
    Ypenburg C, van Bommel RJ, Delgado V, et al. Optimal left ventricular lead position predicts reverse remodeling and survival after cardiac resynchronization therapy. J Am Coll Cardiol 2008;52:1402-9.PubMedCrossRefGoogle Scholar
  49. 49.
    Bleeker GB, Kaandorp TA, Lamb HJ, et al. Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation 2006;113:969-76.PubMedCrossRefGoogle Scholar
  50. 50.
    Boogers MJ, Chen J, van Bommel RJ, et al. Optimal left ventricular lead position assessed with phase analysis on gated myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging 2011;38:230-8.PubMedCrossRefGoogle Scholar
  51. 51.
    AlJaroudi WA, Hage FG, Hermann D, et al. Relation of left-ventricular dyssynchrony by phase analysis of gated SPECT images and cardiovascular events in patients with implantable cardiac defibrillators. J Nucl Cardiol 2010;17:398-404.PubMedCrossRefGoogle Scholar
  52. 52.
    Chen J, Kalogeropoulos AP, Verdes L, Butler J, Garcia EV. Left-ventricular systolic and diastolic dyssynchrony as assessed by multi-harmonic phase analysis of gated SPECT myocardial perfusion imaging in patients with end-stage renal disease and normal LVEF. J Nucl Cardiol; 2011;18:299-308.PubMedCrossRefGoogle Scholar
  53. 53.
    Li D, Pan C, Zhou Y, et al. Multi-harmonic phase analysis of gated SPECT myocardial perfusion imaging compared with NT-pro-BNP and echocardiography for the assessment of left ventricular diastolic function. J Am Coll Cardiol 2011;57:E637. (abstract).CrossRefGoogle Scholar
  54. 54.
    Van Kriekinge SD, Nishina H, Ohba M, et al. Automatic global and regional phase analysis from gated myocardial perfusion SPECT imaging: Application to the characterization of ventricular contraction in patients with left bundle branch block. J Nucl Med 2008;49:1790-7.PubMedCrossRefGoogle Scholar
  55. 55.
    Boogers MM, Van Kriekinge SD, Henneman MM, et al. Quantitative gated SPECT-derived phase analysis on gated myocardial perfusion SPECT detects left ventricular dyssynchrony and predicts response to cardiac resynchronization therapy. J Nucl Med 2009;50:718-25.PubMedCrossRefGoogle Scholar
  56. 56.
    Takahashi N, Yamamoto A, Tezuka S, et al. Assessment of left ventricular dyssynchrony during development of heart failure by a novel program using ECG-gated myocardial perfusion SPECT. Circ J 2008;72:370-7.PubMedCrossRefGoogle Scholar
  57. 57.
    Yamamoto A, Takahashi N, Ishikawa M, et al. Relationship between left ventricular function and wall motion synchrony in heart failure assessed by ECG-gated myocardial perfusion SPECT. Ann Nucl Med 2008;22:751-9.PubMedCrossRefGoogle Scholar
  58. 58.
    Morishima I, Sone T, Tsuboi H, et al. Demonstration of left ventricular dyssynchrony and resynchrony by ECG-gated SPECT with cardioGRAF in a patient with advanced heart failure and narrow QRS complex. J Interv Card Electrophysiol 2009;24:151-4.PubMedCrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2011

Authors and Affiliations

  • Ji Chen
    • 1
  • Ernest V. Garcia
    • 1
  • Jeroen J. Bax
    • 2
  • Ami E. Iskandrian
    • 3
  • Salvador Borges-Neto
    • 4
  • Prem Soman
    • 5
  1. 1.Department of Radiology and Imaging SciencesEmory University School of MedicineAtlantaUSA
  2. 2.Department of CardiologyLeiden University Medical CenterLeidenThe Netherlands
  3. 3.Division of CardiologyUniversity of Alabama at BirminghamBirminghamUSA
  4. 4.Department of RadiologyDuke University Medical CenterDurhamUSA
  5. 5.Cardiovascular InstituteUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations