Advertisement

Three-dimensional contrast-enhanced and non-contrast-enhanced cardiac magnetic resonance imaging for the assessment of myocardial ischemic reactions

The practice of looking deeply into the myocardium

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. 1.

    Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, Friedrich MG, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: A report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. Circulation 2010;121:2462-508.

  2. 2.

    Bingham SE, Hachamovitch R. Incremental prognostic significance of combined cardiac magnetic resonance imaging, adenosine stress perfusion, delayed enhancement, and left ventricular function over preimaging information for the prediction of adverse events. Circulation 2011;123:1509-18.

  3. 3.

    Schwitter J, Arai AE. Assessment of cardiac ischaemia and viability: Role of cardiovascular magnetic resonance. Eur Heart J 2011;32:799-809.

  4. 4.

    Nandalur KR, Dwamena BA, Choudhri AF, Nandalur MR, Carlos RC. Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: A meta-analysis. J Am Coll Cardiol 2007;50:1343-53.

  5. 5.

    Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 2003;50:1031-42.

  6. 6.

    Plein S, Ryf S, Schwitter J, Radjenovic A, Boesiger P, Kozerke S. Dynamic contrast-enhanced myocardial perfusion MRI accelerated with k-t sense. Magn Reson Med 2007;58:777-85.

  7. 7.

    Gebker R, Jahnke C, Paetsch I, Schnackenburg B, Kozerke S, Bornstedt A, Fleck E, et al. MR myocardial perfusion imaging with k-space and time broad-use linear acquisition speed-up technique: Feasibility study. Radiology 2007;245:863-71.

  8. 8.

    Jahnke C, Paetsch I, Gebker R, Bornstedt A, Fleck E, Nagel E. Accelerated 4D dobutamine stress MR imaging with k-t BLAST: Feasibility and diagnostic performance. Radiology 2006;241:718-28.

  9. 9.

    Plein S, Radjenovic A, Ridgway JP, Barmby D, Greenwood JP, Ball SG, Sivananthan MU. Coronary artery disease: Myocardial perfusion MR imaging with sensitivity encoding versus conventional angiography. Radiology 2005;235:423-30.

  10. 10.

    Wolff SD, Schwitter J, Coulden R, Friedrich MG, Bluemke DA, Biederman RW, Martin ET, et al. Myocardial first-pass perfusion magnetic resonance imaging: A multicenter dose-ranging study. Circulation 2004;110:732-7.

  11. 11.

    Gebker R, Jahnke C, Manka R, Frick M, Hucko T, Kozerke S, et al. High spatial resolution myocardial perfusion imaging during high dose dobutamine/atropine stress magnetic resonance using k-t SENSE. Int J Cardiol 2011 [Epub ahead of print]. doi:10.1016/j.ijcard.2011.01.060.

  12. 12.

    Plein S, Kozerke S, Suerder D, Luescher TF, Greenwood JP, Boesiger P, et al. High spatial resolution myocardial perfusion cardiac magnetic resonance for the detection of coronary artery disease. Eur Heart J 2008;29:2148-55.

  13. 13.

    Lockie T, Ishida M, Perera D, Chiribiri A, De Silva K, Kozerke S, et al. High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol 2011;57:70-5.

  14. 14.

    Manka R, Jahnke C, Kozerke S, Vitanis V, Crelier G, Gebker R, et al. Dynamic 3-dimensional stress cardiac magnetic resonance perfusion imaging: Detection of coronary artery disease and volumetry of myocardial hypoenhancement before and after coronary stenting. J Am Coll Cardiol 2011;57:437-44.

  15. 15.

    Berman DS, Kang X, Gransar H, Gerlach J, Friedman JD, Hayes SW, et al. Quantitative assessment of myocardial perfusion abnormality on SPECT myocardial perfusion imaging is more reproducible than expert visual analysis. J Nucl Cardiol 2009;16:45-53.

  16. 16.

    Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: Results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 2008;117:1283-91.

  17. 17.

    Petersen SE, Jerosch-Herold M, Hudsmith LE, Robson MD, Francis JM, Doll HA, et al. Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: New insights from multiparametric magnetic resonance imaging. Circulation 2007;115:2418-25.

  18. 18.

    Fearon WF, Aarnoudse W, Pijls NH, De Bruyne B, Balsam LB, Cooke DT, et al. Microvascular resistance is not influenced by epicardial coronary artery stenosis severity: Experimental validation. Circulation 2004;109:2269-72.

  19. 19.

    Bauer WR, Nadler W, Bock M, Schad LR, Wacker C, Hartlep A, et al. Theory of the BOLD effect in the capillary region: An analytical approach for the determination of T2 in the capillary network of myocardium. Magn Reson Med 1999;41:51-62.

  20. 20.

    Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 1990;87:9868-72.

  21. 21.

    Wacker CM, Hartlep AW, Pfleger S, Schad LR, Ertl G, Bauer WR. Susceptibility-sensitive magnetic resonance imaging detects human myocardium supplied by a stenotic coronary artery without a contrast agent. J Am Coll Cardiol 2003;41:834-40.

  22. 22.

    Bryant RG, Marill K, Blackmore C, Francis C. Magnetic relaxation in blood and blood clots. Magn Reson Med 1990;13:133-44.

  23. 23.

    Atalay MK, Reeder SB, Zerhouni EA, Forder JR. Blood oxygenation dependence of T1 and T2 in the isolated, perfused rabbit heart at 4.7T. Magn Reson Med 1995;34:623-7.

  24. 24.

    Niemi P, Poncelet BP, Kwong KK, Weisskoff RM, Rosen BR, Brady TJ, et al. Myocardial intensity changes associated with flow stimulation in blood oxygenation sensitive magnetic resonance imaging. Magn Reson Med 1996;36:78-82.

  25. 25.

    Wacker CM, Bock M, Hartlep AW, Beck G, van Kaick G, Ertl G, et al. Changes in myocardial oxygenation and perfusion under pharmacological stress with dipyridamole: Assessment using T*2 and T1 measurements. Magn Reson Med 1999;41:686-95.

  26. 26.

    Wright KB, Klocke FJ, Deshpande VS, Zheng J, Harris KR, Tang R, et al. Assessment of regional differences in myocardial blood flow using T2-weighted 3D BOLD imaging. Magn Reson Med 2001;46:573-8.

  27. 27.

    Foltz WD, Merchant N, Downar E, Stainsby JA, Wright GA. Coronary venous oximetry using MRI. Magn Reson Med 1999;42:837-48.

  28. 28.

    Wu XS, Ewert DL, Liu YH, Ritman EL. In vivo relation of intramyocardial blood volume to myocardial perfusion. Evidence supporting microvascular site for autoregulation. Circulation 1992;85:730-7.

  29. 29.

    Lindner JR, Skyba DM, Goodman NC, Jayaweera AR, Kaul S. Changes in myocardial blood volume with graded coronary stenosis. Am J Physiol 1997;272:H567-75.

  30. 30.

    Li D, Dhawale P, Rubin PJ, Haacke EM, Gropler RJ. Myocardial signal response to dipyridamole and dobutamine: Demonstration of the BOLD effect using a double-echo gradient-echo sequence. Magn Reson Med 1996;36:16-20.

  31. 31.

    Atalay MK, Forder JR, Chacko VP, Kawamoto S, Zerhouni EA. Oxygenation in the rabbit myocardium: Assessment with susceptibility-dependent MR imaging. Radiology 1993;189:759-64.

  32. 32.

    Bandettini PA, Wong EC, Jesmanowicz A, Hinks RS, Hyde JS. Spin-echo and gradient-echo EPI of human brain activation using BOLD contrast: A comparative study at 1.5 T. NMR Biomed 1994;7:12-20.

  33. 33.

    Reeder SB, Faranesh AZ, Boxerman JL, McVeigh ER. In vivo measurement of T*2 and field inhomogeneity maps in the human heart at 1.5 T. Magn Reson Med 1998;39:988-98.

  34. 34.

    Beache GM, Herzka DA, Boxerman JL, Post WS, Gupta SN, Faranesh AZ, et al. Attenuated myocardial vasodilator response in patients with hypertensive hypertrophy revealed by oxygenation-dependent magnetic resonance imaging. Circulation 2001;104:1214-7.

  35. 35.

    Fieno DS, Shea SM, Li Y, Harris KR, Finn JP, Li D. Myocardial perfusion imaging based on the blood oxygen level-dependent effect using T2-prepared steady-state free-precession magnetic resonance imaging. Circulation 2004;110:1284-90.

  36. 36.

    Shea SM, Fieno DS, Schirf BE, Bi X, Huang J, Omary RA, et al. T2-prepared steady-state free precession blood oxygen level-dependent MR imaging of myocardial perfusion in a dog stenosis model. Radiology 2005;236:503-9.

  37. 37.

    Dharmakumar R, Hong J, Brittain JH, Plewes DB, Wright GA. Oxygen-sensitive contrast in blood for steady-state free precession imaging. Magn Reson Med 2005;53:574-83.

  38. 38.

    Dharmakumar R, Qi X, Hong J, Wright GA. Detecting microcirculatory changes in blood oxygen state with steady-state free precession imaging. Magn Reson Med 2006;55:1372-80.

  39. 39.

    Dharmakumar R, Arumana JM, Tang R, Harris K, Zhang Z, Li D. Assessment of regional myocardial oxygenation changes in the presence of coronary artery stenosis with balanced SSFP imaging at 3.0 T: Theory and experimental evaluation in canines. J Magn Reson Imaging 2008;27:1037-45.

  40. 40.

    Dharmakumar R, Arumana JM, Larson AC, Chung Y, Wright GA, Li D. Cardiac phase-resolved blood oxygen-sensitive steady-state free precession MRI for evaluating the functional significance of coronary artery stenosis. Invest Radiol 2007;42:180-8.

  41. 41.

    Foltz WD, Huang H, Fort S, Wright GA. Vasodilator response assessment in porcine myocardium with magnetic resonance relaxometry. Circulation 2002;106:2714-9.

  42. 42.

    McCommis KS, Goldstein TA, Abendschein DR, Herrero P, Misselwitz B, Gropler RJ, et al. Quantification of regional myocardial oxygenation by magnetic resonance imaging: Validation with positron emission tomography. Circ Cardiovasc Imaging 2010;3:41-6.

  43. 43.

    Egred M, Waiter GD, Semple SI, Redpath TW, Al-Mohammad A, Norton MY, et al. Blood oxygen level-dependent (BOLD) magnetic resonance imaging in patients with dipyridamole induced ischaemia; a PET comparative study. Int J Cardiol 2007;115:36-41.

  44. 44.

    Friedrich MG, Niendorf T, Schulz-Menger J, Gross CM, Dietz R. Blood oxygen level-dependent magnetic resonance imaging in patients with stress-induced angina. Circulation 2003;108:2219-23.

  45. 45.

    Li D, Oellerich WF, Beck G, Gropler RJ. Assessment of myocardial response to pharmacologic interventions using an improved MR imaging technique to estimate T2 values. AJR Am J Roentgenol 1999;172:141-5.

  46. 46.

    Manka R, Paetsch I, Schnackenburg B, Gebker R, Fleck E, Jahnke C. BOLD cardiovascular magnetic resonance at 3.0 tesla in myocardial ischemia. J Cardiovasc Magn Reson 2010;12:54.

  47. 47.

    Egred M, Waiter GD, Al-Mohammad A, Semple SI, Redpath TW, Walton S. Blood oxygen level dependent (BOLD) MRI: A novel technique for the detection of myocardial ischemia. Eur J Intern Med 2006;17:551-5.

  48. 48.

    Bernhardt P, Manzke R, Bornstedt A, Gradinger R, Spiess J, Walcher D, et al. Blood oxygen level-dependent magnetic resonance imaging using T2-prepared steady-state free-precession imaging in comparison to contrast-enhanced myocardial perfusion imaging. Int J Cardiol 2011;147:416-9.

  49. 49.

    Cianflone D, Lanza GA, Maseri A. Microvascular angina in patients with normal coronary arteries and with other ischaemic syndromes. Eur Heart J 1995;16:96-103.

  50. 50.

    Qian J, Ge J, Baumgart D, Sack S, Haude M, Erbel R. Prevalence of microvascular disease in patients with significant coronary artery disease. Herz 1999;24:548-57.

  51. 51.

    Treasure CB, Klein JL, Vita JA, Manoukian SV, Renwick GH, Selwyn AP, et al. Hypertension and left ventricular hypertrophy are associated with impaired endothelium-mediated relaxation in human coronary resistance vessels. Circulation 1993;87:86-93.

  52. 52.

    Egred M, Al-Mohammad A, Waiter GD, Redpath TW, Semple SK, Norton M, et al. Detection of scarred and viable myocardium using a new magnetic resonance imaging technique: Blood oxygen level dependent (BOLD) MRI. Heart 2003;89:738-44.

  53. 53.

    Karamitsos TD, Leccisotti L, Arnold JR, Recio-Mayoral A, Bhamra-Ariza P, Howells RK, et al. Relationship between regional myocardial oxygenation and perfusion in patients with coronary artery disease: Insights from cardiovascular magnetic resonance and positron emission tomography. Circ Cardiovasc Imaging 2010;3:32-40.

  54. 54.

    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-42.

  55. 55.

    Jahnke C, Gebker R, Manka R, Schnackenburg B, Fleck E, Paetsch I. Navigator-gated 3D blood oxygen level-dependent CMR at 3.0-T for detection of stress-induced myocardial ischemic reactions. JACC Cardiovasc Imaging 2010;3:375-84.

Download references

Author information

Correspondence to Cosima Jahnke MD.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Conventional multislice two-dimensional CMR perfusion imaging during adenosine stress and at rest. A stress-inducible subendocardial perfusion deficit can be clearly delineated in inferior and inferolateral myocardial segments. (AVI 628 kb)

A: Multislice two-dimensional k-t accelerated adenosine stress CMR perfusion scan (from left to right: apical, equatorial and basal slice). The very high in-plane spatial resolution afforded by k-t accelerated dynamic perfusion imaging facilitated the detection of a strictly subendocardial, stress-inducible perfusion deficit in the inferolateral segments (white arrows). B: Invasive x-ray angiography confirmed short distance occlusion of a large marginal branch (black arrows) with retrograde filling via septal collaterals. (AVI 353 kb)

Movie 1

Combined assessment of myocardial function, stress perfusion and LGE imaging (basal short axis view). A: Cine imaging demonstrated hypokinetic wall motion of the anterolateral segment (white arrowhead). B: Adenosine stress dynamic CMR perfusion scan (two-dimensional k-t accelerated perfusion sequence) revealed extensive inducible myocardial perfusion deficits of anterior, anterolateral and inferolateral regions. C: LGE imaging showed subendocardial scar formation of the anterolateral segment only. (AVI 1841 kb)

Movie 2

Conventional multislice two-dimensional CMR perfusion imaging during adenosine stress and at rest. A stress-inducible subendocardial perfusion deficit can be clearly delineated in inferior and inferolateral myocardial segments. (AVI 628 kb)

Movie 3

A: Multislice two-dimensional k-t accelerated adenosine stress CMR perfusion scan (from left to right: apical, equatorial and basal slice). The very high in-plane spatial resolution afforded by k-t accelerated dynamic perfusion imaging facilitated the detection of a strictly subendocardial, stress-inducible perfusion deficit in the inferolateral segments (white arrows). B: Invasive x-ray angiography confirmed short distance occlusion of a large marginal branch (black arrows) with retrograde filling via septal collaterals. (AVI 353 kb)

Movie 4

Dynamic three-dimensional adenosine stress CMR perfusion scan covering the entire heart from apex to base in short-axis orientation. A subendocardial stress-inducible perfusion deficit of the inferolateral segments can be clearly delineated (white arrows) and the distribution is suggestive of obstructive coronary disease in the proximal left circumflex supply territory. (AVI 600 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jahnke, C., Kozerke, S., Schnackenburg, B. et al. Three-dimensional contrast-enhanced and non-contrast-enhanced cardiac magnetic resonance imaging for the assessment of myocardial ischemic reactions. J. Nucl. Cardiol. 18, 937 (2011) doi:10.1007/s12350-011-9391-y

Download citation

Keywords

  • Cardiac Magnetic Resonance
  • Late Gadolinium Enhancement
  • Fractional Flow Reserve
  • Cardiac Magnetic Resonance Imaging
  • Coronary Artery Disease Patient