Journal of Nuclear Cardiology

, Volume 18, Issue 1, pp 144–152

Sex differences in the diagnostic evaluation of coronary artery disease

Review Article


  1. 1.
    Harris DJ, Douglas PS. Enrollment of women in cardiovascular clinical trials funded by the National Heart, Lung, and Blood Institute. N Engl J Med 2000;343:475-80.CrossRefPubMedGoogle Scholar
  2. 2.
    Blauwet LA, Hayes SN, McManus D, Redberg RF, Walsh MN. Low rate of sex-specific result reporting in cardiovascular trials. Mayo Clin Proc 2007;82:166-70.CrossRefPubMedGoogle Scholar
  3. 3.
    Rosamond W, Flegal K, Furie K, et al. Heart disease and stroke statistics—2008 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2008;117:e25-146.CrossRefPubMedGoogle Scholar
  4. 4.
    Hemingway H, Langenberg C, Damant J, Frost C, Pyorala K, Barrett-Connor E. Prevalence of angina in women versus men: A systematic review and meta-analysis of international variations across 31 countries. Circulation 2008;117:1526-36.CrossRefPubMedGoogle Scholar
  5. 5.
    Canto JG, Goldberg RJ, Hand MM, et al. Symptom presentation of women with acute coronary syndromes: Myth vs reality. Arch Intern Med 2007;167:2405-13.CrossRefPubMedGoogle Scholar
  6. 6.
    Sharaf BL, Pepine CJ, Kerensky RA, et al. Detailed angiographic analysis of women with suspected ischemic chest pain (pilot phase data from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation [WISE] Study Angiographic Core Laboratory). Am J Cardiol 2001;87(8):937-941; A3Google Scholar
  7. 7.
    Shaw LJ, Shaw RE, Merz CN, et al. Impact of ethnicity and gender differences on angiographic coronary artery disease prevalence and in-hospital mortality in the American College of Cardiology-National Cardiovascular Data Registry. Circulation 2008;117:787-1801.Google Scholar
  8. 8.
    Bugiardini R, Bairey Merz CN. Angina with “normal” coronary arteries: A changing philosophy. JAMA 2005;293:477-84.CrossRefPubMedGoogle Scholar
  9. 9.
    Kemp HG, Kronmal RA, Vlietstra RE, Frye RL. Seven year survival of patients with normal or near normal coronary arteriograms: A CASS registry study. J Am Coll Cardiol 1986;7:479-83.CrossRefPubMedGoogle Scholar
  10. 10.
    Lichtlen PR, Bargheer K, Wenzlaff P. Long-term prognosis of patients with anginalike chest pain and normal coronary angiographic findings. J Am Coll Cardiol 1995;25:1013-8.CrossRefPubMedGoogle Scholar
  11. 11.
    Kaski JC, Rosano GM, Collins P, Nihoyannopoulos P, Maseri A, Poole-Wilson PA. Cardiac syndrome X: Clinical characteristics and left ventricular function Long-term follow-up study. J Am Coll Cardiol 1995;25:807-14.CrossRefPubMedGoogle Scholar
  12. 12.
    Robinson JG, Wallace R, Limacher M, et al. Cardiovascular risk in women with non-specific chest pain (from the Women’s Health Initiative Hormone Trials). Am J Cardiol 2008;102:693-9.CrossRefPubMedGoogle Scholar
  13. 13.
    Johnson BD, Shaw LJ, Buchthal SD, et al. Prognosis in women with myocardial ischemia in the absence of obstructive coronary disease: Results from the National Institutes of Health-National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation 2004;109:2993-9.CrossRefPubMedGoogle Scholar
  14. 14.
    Gulati M, Cooper-DeHoff RM, McClure C, et al. Adverse cardiovascular outcomes in women with nonobstructive coronary artery disease: A report from the Women’s Ischemia Syndrome Evaluation Study and the St James Women Take Heart Project. Arch Intern Med 2009;169:843-50.CrossRefPubMedGoogle Scholar
  15. 15.
    Johnson BD, Shaw LJ, Pepine CJ, et al. Persistent chest pain predicts cardiovascular events in women without obstructive coronary artery disease: Results from the NIH-NHLBI-sponsored Women’s Ischaemia Syndrome Evaluation (WISE) study. Eur Heart J 2006;27:1408-15.CrossRefPubMedGoogle Scholar
  16. 16.
    Shaw LJ, Merz CN, Pepine CJ, et al. The economic burden of angina in women with suspected ischemic heart disease: Results from the National Institutes of Health—National Heart, Lung, and Blood Institute—sponsored Women’s Ischemia Syndrome Evaluation. Circulation 2006;114:894-904.CrossRefPubMedGoogle Scholar
  17. 17.
    Ford ES, Capewell S. Coronary heart disease mortality among young adults in the U.S. from 1980 through 2002: Concealed leveling of mortality rates. J Am Coll Cardiol 2007;50:2128-32.CrossRefPubMedGoogle Scholar
  18. 18.
    Shaw LJ, Bugiardini R, Merz CN. Women and ischemic heart disease: Evolving knowledge. J Am Coll Cardiol 2009;54:1561-75.CrossRefPubMedGoogle Scholar
  19. 19.
    Vaccarino V, Parsons L, Every NR, Barron HV, Krumholz HM. Sex-based differences in early mortality after myocardial infarction. National Registry of Myocardial Infarction 2 Participants. N Engl J Med 1999;341:217-25.CrossRefPubMedGoogle Scholar
  20. 20.
    Woodfield SL, Lundergan CF, Reiner JS, et al. Gender and acute myocardial infarction: Is there a different response to thrombolysis? J Am Coll Cardiol 1997;29:35-42.CrossRefPubMedGoogle Scholar
  21. 21.
    Becker RC, Burns M, Every N, et al. Early clinical outcomes and routine management of patients with non-ST-segment elevation myocardial infarction: A nationwide perspective. Arch Intern Med 2001;161:601-7.CrossRefPubMedGoogle Scholar
  22. 22.
    Daly C, Clemens F, Lopez Sendon JL, et al. Gender differences in the management and clinical outcome of stable angina. Circulation 2006;113:490-8.CrossRefPubMedGoogle Scholar
  23. 23.
    Roger VL, Farkouh ME, Weston SA, et al. Sex differences in evaluation and outcome of unstable angina. JAMA 2000;283:646-52.CrossRefPubMedGoogle Scholar
  24. 24.
    Maynard C, Beshansky JR, Griffith JL, Selker HP. Influence of sex on the use of cardiac procedures in patients presenting to the emergency department. A prospective multicenter study. Circulation 1996;94:II93-8.PubMedGoogle Scholar
  25. 25.
    Hvelplund A, Galatius S, Madsen M, et al. Women with acute coronary syndrome are less invasively examined and subsequently less treated than men. Eur Heart J 2009;31:684-90.PubMedGoogle Scholar
  26. 26.
    Blomkalns AL, Chen AY, Hochman JS, et al. Gender disparities in the diagnosis and treatment of non-ST-segment elevation acute coronary syndromes: Large-scale observations from the CRUSADE (Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the American College of Cardiology/American Heart Association Guidelines) National Quality Improvement Initiative. J Am Coll Cardiol 2005;45:832-7.CrossRefPubMedGoogle Scholar
  27. 27.
    Jneid H, Fonarow GC, Cannon CP, et al. Sex differences in the medical care and early death after acute myocardial infarction. Circulation 2008;118:2667-8.Google Scholar
  28. 28.
    Bellasi A, Raggi P, Merz CN, Shaw LJ. New insights into ischemic heart disease in women. Clevel Clin J Med 2007;74:585-94.CrossRefGoogle Scholar
  29. 29.
    Ramaekers D, Ector H, Aubert AE, Rubens A, Van de Werf F. Heart rate variability and heart rate in healthy volunteers. Is the female autonomic nervous system cardioprotective? Eur Heart J 1998;19:1334-41.CrossRefPubMedGoogle Scholar
  30. 30.
    Arbustini E, Dal Bello B, Morbini P, et al. Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart 1999;82:269-72.PubMedGoogle Scholar
  31. 31.
    Burke AP, Farb A, Malcom GT, Liang Y, Smialek J, Virmani R. Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women. Circulation 1998;97:2110-6.PubMedGoogle Scholar
  32. 32.
    Han SH, Bae JH, Holmes DR Jr, et al. Sex differences in atheroma burden and endothelial function in patients with early coronary atherosclerosis. Eur Heart J 2008;29:1359-69.CrossRefPubMedGoogle Scholar
  33. 33.
    Dodge JT Jr, Brown BG, Bolson EL, Dodge HT. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 1992;86:232-46.PubMedGoogle Scholar
  34. 34.
    Mieres JH, Shaw LJ, Arai A, et al. Role of noninvasive testing in the clinical evaluation of women with suspected coronary artery disease: Consensus statement from the Cardiac Imaging Committee, Council on Clinical Cardiology, and the Cardiovascular Imaging and Intervention Committee, Council on Cardiovascular Radiology and Intervention, American Heart Association. Circulation 2005;111:682-96.CrossRefPubMedGoogle Scholar
  35. 35.
    Kanaya AM, Grady D, Barrett-Connor E. Explaining the sex difference in coronary heart disease mortality among patients with type 2 diabetes mellitus: A meta-analysis. Arch Intern Med 2002;162:1737-45.CrossRefPubMedGoogle Scholar
  36. 36.
    Lerner DJ, Kannel WB. Patterns of coronary heart disease morbidity and mortality in the sexes: A 26-year follow-up of the Framingham population. Am Heart J 1986;111:383-90.CrossRefPubMedGoogle Scholar
  37. 37.
    Wong ND, Pio J, Valencia R, Thakal G. Distribution of C-reactive protein and its relation to risk factors and coronary heart disease risk estimation in the National Health and Nutrition Examination Survey (NHANES) III. Prev Cardiol 2001;4:109-14.CrossRefPubMedGoogle Scholar
  38. 38.
    Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: The Reynolds Risk Score. JAMA 2007;297:611-9.CrossRefPubMedGoogle Scholar
  39. 39.
    Fowkes FG, Murray GD, Butcher I, et al. Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: A meta-analysis. JAMA 2008;300:197-208.CrossRefPubMedGoogle Scholar
  40. 40.
    Simon A, Chironi G, Levenson J. Comparative performance of subclinical atherosclerosis tests in predicting coronary heart disease in asymptomatic individuals. Eur Heart J 2007;28:2967-71.CrossRefPubMedGoogle Scholar
  41. 41.
    Lakoski SG, Greenland P, Wong ND, et al. Coronary artery calcium scores and risk for cardiovascular events in women classified as “low risk” based on Framingham risk score: The multi-ethnic study of atherosclerosis (MESA). Arch Intern Med 2007;167:2437-42.CrossRefPubMedGoogle Scholar
  42. 42.
    Bellasi A, Lacey C, Taylor AJ, et al. Comparison of prognostic usefulness of coronary artery calcium in men versus women (results from a meta- and pooled analysis estimating all-cause mortality and coronary heart disease death or myocardial infarction). Am J Cardiol 2007;100:409-14.CrossRefPubMedGoogle Scholar
  43. 43.
    Kwok Y, Kim C, Grady D, Segal M, Redberg R. Meta-analysis of exercise testing to detect coronary artery disease in women. Am J Cardiol 1999;83:660-6.CrossRefPubMedGoogle Scholar
  44. 44.
    Gibbons RJ, Balady GJ, Bricker JT, et al. ACC/AHA 2002 guideline update for exercise testing: Summary article: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Circulation 2002;106:1883-92.CrossRefPubMedGoogle Scholar
  45. 45.
    Miller TD, Hodge DO, Christian TF, Milavetz JJ, Bailey KR, Gibbons RJ. Effects of adjustment for referral bias on the sensitivity and specificity of single photon emission computed tomography for the diagnosis of coronary artery disease. Am J Med 2002;112:290-7.CrossRefPubMedGoogle Scholar
  46. 46.
    Alexander KP, Shaw LJ, Shaw LK, Delong ER, Mark DB, Peterson ED. Value of exercise treadmill testing in women. J Am Coll Cardiol 1998;32:1657-64.CrossRefPubMedGoogle Scholar
  47. 47.
    Panzer C, Lauer MS, Brieke A, Blackstone E, Hoogwerf B. Association of fasting plasma glucose with heart rate recovery in healthy adults: A population-based study. Diabetes 2002;51:803-7.CrossRefPubMedGoogle Scholar
  48. 48.
    Gulati M, Pandey DK, Arnsdorf MF, et al. Exercise capacity and the risk of death in women: The St James Women Take Heart Project. Circulation 2003;108:1554-9.CrossRefPubMedGoogle Scholar
  49. 49.
    Hlatky MA, Boineau RE, Higginbotham MB, et al. A brief self-administered questionnaire to determine functional capacity (the Duke Activity Status Index). Am J Cardiol 1989;64:651-4.CrossRefPubMedGoogle Scholar
  50. 50.
    Heupler S, Mehta R, Lobo A, Leung D, Marwick TH. Prognostic implications of exercise echocardiography in women with known or suspected coronary artery disease. J Am Coll Cardiol 1997;30:414-20.CrossRefPubMedGoogle Scholar
  51. 51.
    Poldermans D, Fioretti PM, Boersma E, et al. Long-term prognostic value of dobutamine-atropine stress echocardiography in 1737 patients with known or suspected coronary artery disease: A single-center experience. Circulation 1999;99:757-62.PubMedGoogle Scholar
  52. 52.
    Arruda-Olson AM, Juracan EM, Mahoney DW, McCully RB, Roger VL, Pellikka PA. Prognostic value of exercise echocardiography in 5,798 patients: Is there a gender difference? J Am Coll Cardiol 2002;39:625-31.CrossRefPubMedGoogle Scholar
  53. 53.
    Shaw LJ, Vasey C, Sawada S, Rimmerman C, Marwick TH. Impact of gender on risk stratification by exercise and dobutamine stress echocardiography: Long-term mortality in 4234 women and 6898 men. Eur Heart J 2005;26:447-56.CrossRefPubMedGoogle Scholar
  54. 54.
    Bangalore S, Gopinath D, Yao S, Chaudry F. Risk stratification using stress echocardiography: Incremental prognostic value over historic, clinical and stress electrocardiographic variables across a wide spectrum of Bayesian pretest probabilities for coronary artery disease. J Am Soc Echo 2007;20:244-52.CrossRefGoogle Scholar
  55. 55.
    Marwick TH, Shaw L, Case C, Vasey C, Thomas JD. Clinical and economic impact of exercise electrocardiography and exercise echocardiography in clinical practice. Eur Heart J 2003;24:1153-63.CrossRefPubMedGoogle Scholar
  56. 56.
    Taillefer R, DePuey EG, Udelson JE, Beller GA, Latour Y, Reeves F. Comparative diagnostic accuracy of Tl-201 and Tc-99m sestamibi SPECT imaging (perfusion and ECG-gated SPECT) in detecting coronary artery disease in women. J Am Coll Cardiol 1997;29:69-77.CrossRefPubMedGoogle Scholar
  57. 57.
    Marwick TH, Shaw LJ, Lauer MS, et al. The noninvasive prediction of cardiac mortality in men and women with known or suspected coronary artery disease. Economics of Noninvasive Diagnosis (END) Study Group. Am J Med 1999;106:172-8.CrossRefPubMedGoogle Scholar
  58. 58.
    Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol 2004;11:171-85.CrossRefPubMedGoogle Scholar
  59. 59.
    Tonino PA, De Bruyne B, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009;360:213-24.CrossRefPubMedGoogle Scholar
  60. 60.
    Schachinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 2000;101:1899-906.PubMedGoogle Scholar
  61. 61.
    Jaffe R, Charron T, Puley G, Dick A, Strauss BH. Microvascular obstruction and the no-reflow phenomenon after percutaneous coronary intervention. Circulation 2008;117:3152-6.CrossRefPubMedGoogle Scholar
  62. 62.
    Modena MG, Bonetti L, Coppi F, Bursi F, Rossi R. Prognostic role of reversible endothelial dysfunction in hypertensive postmenopausal women. J Am Coll Cardiol 2002;40:505-10.CrossRefPubMedGoogle Scholar
  63. 63.
    Luotolahti M, Saraste M, Hartiala J. Exercise echocardiography in the diagnosis of coronary artery disease. Ann Med 1996;28:73-7.CrossRefPubMedGoogle Scholar
  64. 64.
    Roger VL, Pellikka PA, Bell MR, Chow CW, Bailey KR, Seward JB. Sex and test verification bias Impact on the diagnostic value of exercise echocardiography. Circulation 1997;95:405-10.PubMedGoogle Scholar
  65. 65.
    Salustri A, Fioretti PM, McNeill AJ, Pozzoli MM, Roelandt JR. Pharmacological stress echocardiography in the diagnosis of coronary artery disease and myocardial ischaemia: A comparison between dobutamine and dipyridamole. Eur Heart J 1992;13:1356-62.PubMedGoogle Scholar
  66. 66.
    Mazeika PK, Nadazdin A, Oakley CM. Stress Doppler echocardiography using dobutamine in coronary patients with and without ischaemia induction. Eur Heart J 1992;13:1020-7.PubMedGoogle Scholar
  67. 67.
    Marwick T, D’Hondt AM, Baudhuin T, et al. Optimal use of dobutamine stress for the detection and evaluation of coronary artery disease: Combination with echocardiography or scintigraphy, or both? J Am Coll Cardiol 1993;22:159-67.CrossRefPubMedGoogle Scholar
  68. 68.
    Dionisopoulos PN, Collins JD, Smart SC, Knickelbine TA, Sagar KB. The value of dobutamine stress echocardiography for the detection of coronary artery disease in women. J Am Soc Echocardiogr 1997;10:811-7.CrossRefPubMedGoogle Scholar
  69. 69.
    Elhendy A, Geleijnse ML, van Domburg RT, et al. Gender differences in the accuracy of dobutamine stress echocardiography for the diagnosis of coronary artery disease. Am J Cardiol 1997;80:1414-8.CrossRefPubMedGoogle Scholar
  70. 70.
    Secknus MA, Marwick TH. Influence of gender on physiologic response and accuracy of dobutamine echocardiography. Am J Cardiol 1997;80:721-4.CrossRefPubMedGoogle Scholar
  71. 71.
    Rollan MJ, San Roman JA, Vilacosta I, et al. The influence of sex on the performance of dobutamine echocardiography for the diagnosis of ischemic cardiopathy. Rev Esp Cardiol 1999;52:1060-5.PubMedGoogle Scholar
  72. 72.
    Kiat H, Van Train KF, Maddahi J, et al. Development and prospective application of quantitative 2-day stress-rest Tc-99m methoxy isobutyl isonitrile SPECT for the diagnosis of coronary artery disease. Am Heart J 1990;120:1255-66.CrossRefPubMedGoogle Scholar
  73. 73.
    Van Train KF, Maddahi J, Berman DS, et al. Quantitative analysis of tomographic stress thallium-201 myocardial scintigrams: A multicenter trial. J Nucl Med 1990;31:1168-79.PubMedGoogle Scholar
  74. 74.
    Gupta NC, Esterbrooks DJ, Hilleman DE, Mohiuddin SM. Comparison of adenosine and exercise thallium-201 single-photon emission computed tomography (SPECT) myocardial perfusion imaging. The GE SPECT Multicenter Adenosine Study Group. J Am Coll Cardiol 1992;19:248-57.CrossRefPubMedGoogle Scholar
  75. 75.
    Sciammarella MG, Fragasso G, Gerundini P, et al. 99Tcm-MIBI single photon emission tomography (SPET) for detecting myocardial ischaemia and necrosis in patients with significant coronary artery disease. Nucl Med Commun 1992;13:871-8.CrossRefPubMedGoogle Scholar
  76. 76.
    Hambye AS, Vervaet A, Lieber S, Ranquin R. Diagnostic value and incremental contribution of bicycle exercise, first-pass radionuclide angiography, and 99mTc-labeled sestamibi single-photon emission computed tomography in the identification of coronary artery disease in patients without infarction. J Nucl Cardiol 1996;3:464-74.CrossRefPubMedGoogle Scholar
  77. 77.
    Astarita C, Nicolai E, Liguori E, Gambardella S, Rumolo S, Maresca FS. Dipyridamole-echocardiography and thallium exercise myocardial scintigraphy in the diagnosis of obstructive coronary or microvascular disease in hypertensive patients with left ventricular hypertrophy and angina. G Ital Cardiol 1998;28:996-1004.PubMedGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2010

Authors and Affiliations

  • Patricia K. Nguyen
    • 1
  • Divya Nag
    • 2
  • Joseph C. Wu
    • 1
    • 2
    • 3
  1. 1.Division of Cardiology, Department of MedicineStanford UniversityStanfordUSA
  2. 2.Department of RadiologyMolecular Imaging Program at Stanford (MIPS)StanfordUSA
  3. 3.Institute for Stem Cell Biology and Regenerative MedicineStanford University School of MedicineStanfordUSA

Personalised recommendations