Journal of Nuclear Cardiology

, Volume 17, Issue 6, pp 1091–1100

Quantitative and qualitative analysis and interpretation of CT perfusion imaging

  • Carolina Valdiviezo
  • Marietta Ambrose
  • Vishal Mehra
  • Albert C. Lardo
  • Joao A. C. Lima
  • Richard T. George
Review Article


Coronary artery disease (CAD) remains the leading cause of death in the United States. Rest and stress myocardial perfusion imaging has an important role in the non-invasive risk stratification of patients with CAD. However, diagnostic accuracies have been limited, which has led to the development of several myocardial perfusion imaging techniques. Among them, myocardial computed tomography perfusion imaging (CTP) is especially interesting as it has the unique capability of providing anatomic- as well as coronary stenosis-related functional data when combined with computed tomography angiography (CTA). The primary aim of this article is to review the qualitative, semi-quantitative, and quantitative analysis approaches to CTP imaging. In doing so, we will describe the image data required for each analysis and discuss the advantages and disadvantages of each approach.


Myocardial perfusion myocardial blood flow CT perfusion imaging CAD MDCT CTA Patlak plot upslope analyses deconvolution analyses 


  1. 1.
    Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et al. Heart disease and stroke statistics-2010 update: A report from the American Heart Association. Circulation 2010;121:e46-215.CrossRefPubMedGoogle Scholar
  2. 2.
    San Roman JA, Vilacosta I, Castillo JA, Rollan MJ, Hernandez M, Peral V, et al. Selection of the optimal stress test for the diagnosis of coronary artery disease. Heart 1998;80:370-6.PubMedGoogle Scholar
  3. 3.
    Schuijf JD, Wijns W, Jukema JW, Atsma DE, de Roos A, Lamb HJ, et al. Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol 2006;48:2508-14.CrossRefPubMedGoogle Scholar
  4. 4.
    Iskandrian AS, Chae SC, Heo J, Stanberry CD, Wasserleben V, Cave V. Independent and incremental prognostic value of exercise single-photon emission computed tomographic (SPECT) thallium imaging in coronary artery disease. J Am Coll Cardiol 1993;22:665-70.CrossRefPubMedGoogle Scholar
  5. 5.
    Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: Results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 2008;52:1724-32.CrossRefPubMedGoogle Scholar
  6. 6.
    Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 2008;359:2324-36.CrossRefPubMedGoogle Scholar
  7. 7.
    Blankstein R, Shturman LD, Rogers IS, Rocha-Filho JA, Okada DR, Sarwar A, et al. Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol 2009;54:1072-84.CrossRefPubMedGoogle Scholar
  8. 8.
    George RT, Arbab-Zadeh A, Miller JM, Kitagawa K, Chang HJ, Bluemke DA, et al. Adenosine stress 64- and 256-row detector computed tomography angiography and perfusion imaging: A pilot study evaluating the transmural extent of perfusion abnormalities to predict atherosclerosis causing myocardial ischemia. Circ Cardiovasc Imaging 2009;2:174-82.CrossRefPubMedGoogle Scholar
  9. 9.
    George RT, Ichihara T, Lima JA, Lardo AC. A method for reconstructing the arterial input function during helical CT: Implications for myocardial perfusion distribution imaging. Radiology 2009;255:396-404.CrossRefGoogle Scholar
  10. 10.
    George RT, Jerosch-Herold M, Silva C, Kitagawa K, Bluemke DA, Lima JA, et al. Quantification of myocardial perfusion using dynamic 64-detector computed tomography. Invest Radiol 2007;42:815-22.CrossRefPubMedGoogle Scholar
  11. 11.
    George RT, Silva C, Cordeiro MA, DiPaula A, Thompson DR, McCarthy WF, et al. Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol 2006;48:153-60.CrossRefPubMedGoogle Scholar
  12. 12.
    Kido T, Kurata A, Higashino H, Inoue Y, Kanza RE, Okayama H, et al. Quantification of regional myocardial blood flow using first-pass multidetector-row computed tomography and adenosine triphosphate in coronary artery disease. Circ J 2008;72:1086-91.CrossRefPubMedGoogle Scholar
  13. 13.
    Kurata A, Mochizuki T, Koyama Y, Haraikawa T, Suzuki J, Shigematsu Y, et al. Myocardial perfusion imaging using adenosine triphosphate stress multi-slice spiral computed tomography: Alternative to stress myocardial perfusion scintigraphy. Circ J 2005;69:550-7.CrossRefPubMedGoogle Scholar
  14. 14.
    Wolfkiel CJ, Ferguson JL, Chomka EV, Law WR, Labin IN, Tenzer ML, et al. Measurement of myocardial blood flow by ultrafast computed tomography. Circulation 1987;76:1262-73.PubMedGoogle Scholar
  15. 15.
    Cademartiri F, Mollet NR, van der Lugt A, McFadden EP, Stijnen T, de Feyter PJ, et al. Intravenous contrast material administration at helical 16-detector row CT coronary angiography: Effect of iodine concentration on vascular attenuation. Radiology 2005;236:661-5.CrossRefPubMedGoogle Scholar
  16. 16.
    Rumberger JA, Bell MR. Measurement of myocardial perfusion and cardiac output using intravenous injection methods by ultrafast (cine) computed tomography. Invest Radiol 1992;27:S40-6.CrossRefPubMedGoogle Scholar
  17. 17.
    Rumberger JA, Feiring AJ, Lipton MJ, Higgins CB, Ell SR, Marcus ML. Use of ultrafast computed tomography to quantitate regional myocardial perfusion: A preliminary report. J Am Coll Cardiol 1987;9:59-69.CrossRefPubMedGoogle Scholar
  18. 18.
    Newhouse JH, Murphy RX Jr. Tissue distribution of soluble contrast: Effect of dose variation and changes with time. AJR Am J Roentgenol 1981;136:463-7.PubMedGoogle Scholar
  19. 19.
    Wu XS, Ewert DL, Liu YH, Ritman EL. In vivo relation of intramyocardial blood volume to myocardial perfusion. Evidence supporting microvascular site for autoregulation. Circulation 1992;85:730-7.PubMedGoogle Scholar
  20. 20.
    Kitagawa K, George RT, Arbab-Zadeh A, Lima JAC, Lardo AC. Characterization and correction of beam hardening artifacts during dynamic volume computed tomography myocardial perfusion imaging. Radiology 2010 (in press).Google Scholar
  21. 21.
    Bastarrika G, Ramos-Duran L, Rosenblum MA, Kang DK, Rowe GW, Schoepf UJ. Adenosine-stress dynamic myocardial CT perfusion imaging: Initial clinical experience. Invest Radiol 2010;45:306-13.CrossRefPubMedGoogle Scholar
  22. 22.
    Bell MR, Lerman LO, Rumberger JA. Validation of minimally invasive measurement of myocardial perfusion using electron beam computed tomography and application in human volunteers. Heart 1999;81:628-35.PubMedGoogle Scholar
  23. 23.
    Achenbach S, Giesler T, Ropers D, Ulzheimer S, Derlien H, Schulte C, et al. Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography. Circulation 2001;103:2535-8.PubMedGoogle Scholar
  24. 24.
    Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R, Decramer I, Van Hoe LR, Wijns W, et al. Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: Meta-analysis. Radiology 2007;244:419-28.CrossRefPubMedGoogle Scholar
  25. 25.
    Christian TF, Frankish ML, Sisemoore JH, Christian MR, Gentchos G, Bell SP, et al. Myocardial perfusion imaging with first-pass computed tomographic imaging: Measurement of coronary flow reserve in an animal model of regional hyperemia. J Nucl Cardiol 2010;17:625-30.CrossRefPubMedGoogle Scholar
  26. 26.
    Christian TF, Rettmann DW, Aletras AH, Liao SL, Taylor JL, Balaban RS, et al. Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology 2004;232:677-84.CrossRefPubMedGoogle Scholar
  27. 27.
    Hsu LY, Rhoads KL, Holly JE, Kellman P, Aletras AH, Arai AE. Quantitative myocardial perfusion analysis with a dual-bolus contrast-enhanced first-pass MRI technique in humans. J Magn Reson Imaging 2006;23:315-22.CrossRefPubMedGoogle Scholar
  28. 28.
    Jerosch-Herold M, Wilke N, Stillman AE. Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 1998;25:73-84.CrossRefPubMedGoogle Scholar
  29. 29.
    Axel L. Tissue mean transit time from dynamic computed tomography by a simple deconvolution technique. Invest Radiol 1983;18:94-9.CrossRefPubMedGoogle Scholar
  30. 30.
    Bassingthwaighte JB, Raymond GM, Ploger JD, Schwartz LM, Bukowski TR. GENTEX, a general multiscale model for in vivo tissue exchanges and intraorgan metabolism. Philos Trans A 2006;364:1423-42.CrossRefGoogle Scholar
  31. 31.
    Kroll K, Wilke N, Jerosch-Herold M, Wang Y, Zhang Y, Bache RJ, et al. Modeling regional myocardial flows from residue functions of an intravascular indicator. Am J Physiol 1996;271:H1643-55.PubMedGoogle Scholar
  32. 32.
    Hackstein N, Bauer J, Hauck EW, Ludwig M, Kramer HJ, Rau WS. Measuring single-kidney glomerular filtration rate on single-detector helical CT using a two-point Patlak plot technique in patients with increased interstitial space. AJR Am J Roentgenol 2003;181:147-56.PubMedGoogle Scholar
  33. 33.
    Hackstein N, Wiegand C, Rau WS, Langheinrich AC. Glomerular filtration rate measured by using triphasic helical CT with a two-point Patlak plot technique. Radiology 2004;230:221-6.CrossRefPubMedGoogle Scholar
  34. 34.
    Tsuchida T, Sadato N, Yonekura Y, Yamamoto K, Waki A, Sugimoto K, et al. Quantification of regional cerebral blood flow with continuous infusion of technetium-99m-ethyl cysteinate dimer. J Nucl Med 1997;38:1699-702.PubMedGoogle Scholar
  35. 35.
    Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983;3:1-7.PubMedGoogle Scholar
  36. 36.
    Rutland MD. A single injection technique for subtraction of blood background in 131I-hippuran renograms. Br J Radiol 1979;52:134-7.CrossRefPubMedGoogle Scholar
  37. 37.
    Ichihara T, George RT, Lima JAC, et al. Quantitative Analysis of First-Pass Contrast-Enhanced Myocardial Perfusion Multidetector CT Using a Patlak Plot Method and Extraction Fraction Correction During Adenosine Stress. Paper presented at: Nuclear Science Symposium Conference Record, IEEE, 2009.Google Scholar
  38. 38.
    Daghini E, Primak AN, Chade AR, Zhu X, Ritman EL, McCollough CH, et al. Evaluation of porcine myocardial microvascular permeability and fractional vascular volume using 64-slice helical computed tomography (CT). Invest Radiol 2007;42:274-82.CrossRefPubMedGoogle Scholar
  39. 39.
    Keijer JT, van Rossum AC, van Eenige MJ, Bax JJ, Visser FC, Teule JJ, et al. Magnetic resonance imaging of regional myocardial perfusion in patients with single-vessel coronary artery disease: Quantitative comparison with (201)Thallium-SPECT and coronary angiography. J Magn Reson Imaging 2000;11:607-15.CrossRefPubMedGoogle Scholar
  40. 40.
    Stoll M, Quentin M, Molojavyi A, Thamer V, Decking UK. Spatial heterogeneity of myocardial perfusion predicts local potassium channel expression and action potential duration. Cardiovasc Res 2008;77:489-96.CrossRefPubMedGoogle Scholar
  41. 41.
    Taillefer R, Ahlberg AW, Masood Y, White CM, Lamargese I, Mather JF, et al. Acute beta-blockade reduces the extent and severity of myocardial perfusion defects with dipyridamole Tc-99 m sestamibi SPECT imaging. J Am Coll Cardiol 2003;42:1475-83.CrossRefPubMedGoogle Scholar
  42. 42.
    Yoon AJ, Melduni RM, Duncan SA, Ostfeld RJ, Travin MI. The effect of beta-blockers on the diagnostic accuracy of vasodilator pharmacologic SPECT myocardial perfusion imaging. J Nucl Cardiol 2009;16:358-67.CrossRefPubMedGoogle Scholar
  43. 43.
    Kitagawa K, Lardo AC, Lima JAC, George RT. Prospective ECG-gated 320 row detector computed tomography: Implications for CT angiography and perfusion imaging. Int J Cardiovasc Imaging 2009;25:201-8.CrossRefGoogle Scholar
  44. 44.
    Rodriguez-Granillo GA, Rosales MA, Degrossi E, Rodriguez AE. Signal density of left ventricular myocardial segments and impact of beam hardening artifact: Implications for myocardial perfusion assessment by multidetector CT coronary angiography. Int J Cardiovasc Imaging 2010;26:345-54.CrossRefPubMedGoogle Scholar
  45. 45.
    Kitagawa K, George RT, Chang H, Lima JAC, Lardo AC. Myocardial perfusion assessment using dynamic-mode 256-row multidetector computed tomography: Influence of beam hardening correction. J Cardiovasc Comput Tomogr 2008;2:S24.Google Scholar
  46. 46.
    George RT, Kitagawa K, Laws K, Lardo AC, Lima JAC. Combined adenosine stress perfusion and coronary angiography using 320-row detector dynamic volume computed tomography in patients with suspected coronary artery disease. Circulation 2008;118:S_936.Google Scholar

Copyright information

© American Society of Nuclear Cardiology 2010

Authors and Affiliations

  • Carolina Valdiviezo
    • 1
  • Marietta Ambrose
    • 1
  • Vishal Mehra
    • 1
  • Albert C. Lardo
    • 1
    • 3
  • Joao A. C. Lima
    • 1
    • 2
  • Richard T. George
    • 1
  1. 1.Division of Cardiology, Department of MedicineJohns Hopkins UniversityBaltimoreUSA
  2. 2.Division of Nuclear Medicine, Russell Morgan Department of RadiologyJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations