Journal of Nuclear Cardiology

, Volume 17, Issue 5, pp 781–790 | Cite as

The role of noninvasive imaging in promoting cardiovascular health

Review Article

Abstract

Cardiovascular disease (CVD) is the leading cause of death worldwide, and its prevalence is likely to increase in the near future. The morbidity and mortality associated with CVD causes an enormous economic burden, which has become a major problem for many societies across the globe. The current prevention strategies are aimed at identifying and reducing established risk factors for atherosclerosis including hypertension, hypercholesterolemia, diabetes, obesity, smoking, and sedentary lifestyle. However, some of our prevention goals, such as reducing LDL cholesterol, change dramatically once a subject has been diagnosed with coronary atherosclerosis. At the present time, atherosclerosis is frequently diagnosed relatively late in the course of the disease, when a patient develops symptoms or presents with acute events such as an acute coronary syndrome or a stroke. Several studies have demonstrated that novel noninvasive imaging techniques have the potential to identify subclinical atherosclerosis and high-risk plaques. Early detection of subclinical atherosclerosis may enable clinicians to improve the control of cardiovascular risk factors in affected patients earlier, thereby helping to prevent some of the manifestations of CVD.

Keywords

Atherosclerosis magnetic resonance imaging molecular imaging PET imaging unstable atherosclerotic plaque 

References

  1. 1.
    Fuster V, Voute J, Hunn M, Smith SC Jr. Low priority of cardiovascular and chronic diseases on the global health agenda: A cause for concern. Circulation 2007;116:1966-70.CrossRefPubMedGoogle Scholar
  2. 2.
    Falk E. Coronary thrombosis: Pathogenesis and clinical manifestations. Am J Cardiol 1991;68:28B-35B.CrossRefPubMedGoogle Scholar
  3. 3.
    Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med 1999;340:115-26.CrossRefPubMedGoogle Scholar
  4. 4.
    Rudd JH, Myers KS, Bansilal S, Machac J, Woodward M, Fuster V, Farkouh ME, Fayad ZA. Relationships among regional arterial inflammation, calcification, risk factors, and biomarkers: A prospective fluorodeoxyglucose positron-emission tomography/computed tomography imaging study. Circ Cardiovasc Imaging 2009;2:107-15.CrossRefPubMedGoogle Scholar
  5. 5.
    Hackett D, Davies G, Maseri A. Pre-existing coronary stenoses in patients with first myocardial infarction are not necessarily severe. Eur Heart J 1988;9:1317-23.PubMedGoogle Scholar
  6. 6.
    Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006;47:C13-8.CrossRefPubMedGoogle Scholar
  7. 7.
    Mann JM, Davies MJ. Vulnerable plaque. Relation of characteristics to degree of stenosis in human coronary arteries. Circulation 1996;94:928-31.PubMedGoogle Scholar
  8. 8.
    Davies MJ. Stability and instability: Two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation 1996;94:2013-20.PubMedGoogle Scholar
  9. 9.
    Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 1997;336:1276-82.CrossRefPubMedGoogle Scholar
  10. 10.
    Li H, Cybulsky MI, Gimbrone MA Jr, Libby P. Inducible expression of vascular cell adhesion molecule-1 by vascular smooth muscle cells in vitro and within rabbit atheroma. Am J Pathol 1993;143:1551-9.PubMedGoogle Scholar
  11. 11.
    Li H, Cybulsky MI, Gimbrone MA Jr, Libby P. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb 1993;13:197-204.PubMedGoogle Scholar
  12. 12.
    Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos JC, Connelly PW, Milstone DS. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 2001;107:1255-62.CrossRefPubMedGoogle Scholar
  13. 13.
    Iiyama K, Hajra L, Iiyama M, Li H, DiChiara M, Medoff BD, Cybulsky MI. Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ Res 1999;85:199-207.PubMedGoogle Scholar
  14. 14.
    Cybulsky MI, Gimbrone MA Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 1991;251:788-91.CrossRefPubMedGoogle Scholar
  15. 15.
    Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998;394:894-7.CrossRefPubMedGoogle Scholar
  16. 16.
    Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 1998;2:275-81.CrossRefPubMedGoogle Scholar
  17. 17.
    Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata M. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci USA 1995;92:8264-8.CrossRefPubMedGoogle Scholar
  18. 18.
    Qiao JH, Tripathi J, Mishra NK, Cai Y, Tripathi S, Wang XP, Imes S, Fishbein MC, Clinton SK, Libby P, Lusis AJ, Rajavashisth TB. Role of macrophage colony-stimulating factor in atherosclerosis: Studies of osteopetrotic mice. Am J Pathol 1997;150:1687-99.PubMedGoogle Scholar
  19. 19.
    Richardson PD, Davies MJ, Born GV. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 1989;2:941-4.CrossRefPubMedGoogle Scholar
  20. 20.
    Lendon C, Born GV, Davies MJ, Richardson PD. Plaque fissure: The link between atherosclerosis and thrombosis. Nouv Rev Fr Hematol 1992;34:27-9.PubMedGoogle Scholar
  21. 21.
    Loree HM, Kamm RD, Stringfellow RG, Lee RT. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 1992;71:850-8.PubMedGoogle Scholar
  22. 22.
    Sukhova GK, Schonbeck U, Rabkin E, Schoen FJ, Poole AR, Billinghurst RC, Libby P. Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation 1999;99:2503-9.PubMedGoogle Scholar
  23. 23.
    Horton DB, Libby P, Schonbeck U. Ligation of CD40 onvascular smooth muscle cells mediates loss of interstitial collagen via matrix metalloproteinase activity. Ann N Y Acad Sci 2001;947:329-36.CrossRefPubMedGoogle Scholar
  24. 24.
    Libby P. Molecular and cellular mechanisms of the thrombotic complications of atherosclerosis. J Lipid Res 2009;50 Suppl:S352-7.PubMedGoogle Scholar
  25. 25.
    Kwon HM, Sangiorgi G, Ritman EL, McKenna C, Holmes DR Jr, Schwartz RS, Lerman A. Enhanced coronary vasa vasorum neovascularization in experimental hypercholesterolemia. J Clin Invest 1998;101:1551-6.CrossRefPubMedGoogle Scholar
  26. 26.
    Carmeliet P. Angiogenesis in health and disease. Nat Med 2003;9:653-60.CrossRefPubMedGoogle Scholar
  27. 27.
    Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J. Atherosclerotic plaque progression and vulnerability to rupture: Angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 2005;25:2054-61.CrossRefPubMedGoogle Scholar
  28. 28.
    Sluimer JC, Kolodgie FD, Bijnens AP, Maxfield K, Pacheco E, Kutys B, Duimel H, Frederik PM, van Hinsbergh VW, Virmani R, Daemen MJ. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J Am Coll Cardiol 2009;53:1517-27.CrossRefPubMedGoogle Scholar
  29. 29.
    Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995;92:657-71.PubMedGoogle Scholar
  30. 30.
    Moreno PR, Purushothaman KR, Fuster V, Echeverri D, Truszczynska H, Sharma SK, Badimon JJ, O’Connor WN. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: Implications for plaque vulnerability. Circulation 2004;110:2032-8.CrossRefPubMedGoogle Scholar
  31. 31.
    Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, Farb A, Guerrero LJ, Hayase M, Kutys R, Narula J, Finn AV, Virmani R. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 2003;349:2316-25.CrossRefPubMedGoogle Scholar
  32. 32.
    Kockx MM, Cromheeke KM, Knaapen MW, Bosmans JM, De Meyer GR, Herman AG, Bult H. Phagocytosis and macrophage activation associated with hemorrhagic microvessels in human atherosclerosis. Arterioscler Thromb Vasc Biol 2003;23:440-6.CrossRefPubMedGoogle Scholar
  33. 33.
    Choudhury RP, Fuster V, Badimon JJ, Fisher EA, Fayad ZA. MRI and characterization of atherosclerotic plaque: Emerging applications and molecular imaging. Arterioscler Thromb Vasc Biol 2002;22:1065-74.CrossRefPubMedGoogle Scholar
  34. 34.
    Hatsukami TS, Ross R, Polissar NL, Yuan C. Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation 2000;102:959-64.PubMedGoogle Scholar
  35. 35.
    Yuan C, Zhang SX, Polissar NL, Echelard D, Ortiz G, Davis JW, Ellington E, Ferguson MS, Hatsukami TS. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 2002;105:181-5.CrossRefPubMedGoogle Scholar
  36. 36.
    Cai J, Hatsukami TS, Ferguson MS, Kerwin WS, Saam T, Chu B, Takaya N, Polissar NL, Yuan C. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: Comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation 2005;112:3437-44.CrossRefPubMedGoogle Scholar
  37. 37.
    Trivedi RA JUK-I, Graves MJ, Horsley J, Goddard M, Kirkpatrick PJ, Gillard JH. Multi-sequence in vivo MRI can quantify fibrous cap and lipid core components in human carotid atherosclerotic plaques. Eur J Vasc Endovasc Surg 2004;28:207-13.PubMedGoogle Scholar
  38. 38.
    Saam T, Ferguson MS, Yarnykh VL, Takaya N, Xu D, Polissar NL, Hatsukami TS, Yuan C. Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol 2005;25:234-9.CrossRefPubMedGoogle Scholar
  39. 39.
    Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987;316:1371-5.CrossRefPubMedGoogle Scholar
  40. 40.
    Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352:1685-95.CrossRefPubMedGoogle Scholar
  41. 41.
    Trivedi RA, U-King-Im JM, Graves MJ, Cross JJ, Horsley J, Goddard MJ, Skepper JN, Quartey G, Warburton E, Joubert I, Wang L, Kirkpatrick PJ, Brown J, Gillard JH. In vivo detection of macrophages in human carotid atheroma: Temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke 2004;35:1631-5.CrossRefPubMedGoogle Scholar
  42. 42.
    Tang TY, Howarth SP, Miller SR, Graves MJ, U-King-Im JM, Li ZY, Walsh SR, Patterson AJ, Kirkpatrick PJ, Warburton EA, Varty K, Gaunt ME, Gillard JH. Correlation of carotid atheromatous plaque inflammation using USPIO-enhanced MR imaging with degree of luminal stenosis. Stroke 2008;39:2144-7.CrossRefPubMedGoogle Scholar
  43. 43.
    Tang TY, Howarth SP, Li ZY, Miller SR, Graves MJ, U-King-Im JM, Trivedi RA, Walsh SR, Brown AP, Kirkpatrick PJ, Gaunt ME, Gillard JH. Correlation of carotid atheromatous plaque inflammation with biomechanical stress: Utility of USPIO enhanced MR imaging and finite element analysis. Atherosclerosis 2008;196:879-87.CrossRefPubMedGoogle Scholar
  44. 44.
    Smith BR, Heverhagen J, Knopp M, Schmalbrock P, Shapiro J, Shiomi M, Moldovan NI, Ferrari M, Lee SC. Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI). Biomed Microdevices 2007;9:719-27.CrossRefPubMedGoogle Scholar
  45. 45.
    von Zur Muhlen C, von Elverfeldt D, Bassler N, Neudorfer I, Steitz B, Petri-Fink A, Hofmann H, Bode C, Peter K. Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b/CD18): Implications on imaging of atherosclerotic plaques. Atherosclerosis 2007;193:102-11.CrossRefGoogle Scholar
  46. 46.
    Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, Allen JS, Lacy EK, Robertson JD, Lanza GM, Wickline SA. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 2003;108:2270-4.CrossRefPubMedGoogle Scholar
  47. 47.
    Corti R, Fuster V, Fayad ZA, Worthley SG, Helft G, Smith D, Weinberger J, Wentzel J, Mizsei G, Mercuri M, Badimon JJ. Lipid lowering by simvastatin induces regression of human atherosclerotic lesions: Two years’ follow-up by high-resolution noninvasive magnetic resonance imaging. Circulation 2002;106:2884-7.CrossRefPubMedGoogle Scholar
  48. 48.
    Corti R, Fuster V, Fayad ZA, Worthley SG, Helft G, Chaplin WF, Muntwyler J, Viles-Gonzalez JF, Weinberger J, Smith DA, Mizsei G, Badimon JJ. Effects of aggressive versus conventional lipid-lowering therapy by simvastatin on human atherosclerotic lesions: A prospective, randomized, double-blind trial with high-resolution magnetic resonance imaging. J Am Coll Cardiol 2005;46:106-12.CrossRefPubMedGoogle Scholar
  49. 49.
    Lima JA, Desai MY, Steen H, Warren WP, Gautam S, Lai S. Statin-induced cholesterol lowering and plaque regression after 6 months of magnetic resonance imaging-monitored therapy. Circulation 2004;110:2336-41.CrossRefPubMedGoogle Scholar
  50. 50.
    Garcia MJ. Cardiac CT: understanding and adopting a new diagnostic modality. Cardiol Clin 2009;27:555-62.CrossRefPubMedGoogle Scholar
  51. 51.
    Carrascosa PM, Capunay CM, Garcia-Merletti P, Carrascosa J, Garcia MF. Characterization of coronary atherosclerotic plaques by multidetector computed tomography. Am J Cardiol 2006;97:598-602.CrossRefPubMedGoogle Scholar
  52. 52.
    Pohle K, Achenbach S, Macneill B, Ropers D, Ferencik M, Moselewski F, Hoffmann U, Brady TJ, Jang IK, Daniel WG. Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: Comparison to IVUS. Atherosclerosis 2007;190:174-80.CrossRefPubMedGoogle Scholar
  53. 53.
    Hyafil F, Cornily JC, Feig JE, Gordon R, Vucic E, Amirbekian V, Fisher EA, Fuster V, Feldman LJ, Fayad ZA. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med 2007;13:636-41.CrossRefPubMedGoogle Scholar
  54. 54.
    Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, Yates D, LaMuraglia GM, Furie K, Houser S, Gewirtz H, Muller JE, Brady TJ, Fischman AJ. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006;48:1818-24.CrossRefPubMedGoogle Scholar
  55. 55.
    Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, Johnstrom P, Davenport AP, Kirkpatrick PJ, Arch BN, Pickard JD, Weissberg PL. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708-11.CrossRefPubMedGoogle Scholar
  56. 56.
    Rudd JH, Myers KS, Bansilal S, Machac J, Rafique A, Farkouh M, Fuster V, Fayad ZA. (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: Implications for atherosclerosis therapy trials. J Am Coll Cardiol 2007;50:892-6.CrossRefPubMedGoogle Scholar
  57. 57.
    Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, Hayabuchi N, Imaizumi T. Simvastatin attenuates plaque inflammation: Evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2006;48:1825-31.CrossRefPubMedGoogle Scholar
  58. 58.
    Geng YJ, Henderson LE, Levesque EB, Muszynski M, Libby P. Fas is expressed in human atherosclerotic intima and promotes apoptosis of cytokine-primed human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1997;17:2200-8.PubMedGoogle Scholar
  59. 59.
    Bjorkerud S, Bjorkerud B. Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability. Am J Pathol 1996;149:367-80.PubMedGoogle Scholar
  60. 60.
    Kolodgie FD, Petrov A, Virmani R, Narula N, Verjans JW, Weber DK, Hartung D, Steinmetz N, Vanderheyden JL, Vannan MA, Gold HK, Reutelingsperger CP, Hofstra L, Narula J. Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: A technique with potential for noninvasive imaging of vulnerable plaque. Circulation 2003;108:3134-9.CrossRefPubMedGoogle Scholar
  61. 61.
    Kietselaer BL, Reutelingsperger CP, Heidendal GA, Daemen MJ, Mess WH, Hofstra L, Narula J. Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 2004;350:1472-3.CrossRefPubMedGoogle Scholar
  62. 62.
    D’Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB. General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation 2008;117:743-53.CrossRefPubMedGoogle Scholar
  63. 63.
    Wilson PW, Pencina M, Jacques P, Selhub J, D’Agostino R Sr, O’Donnell CJ. C-reactive protein and reclassification of cardiovascular risk in the Framingham Heart Study. Circ Cardiovasc Qual Outcomes 2008;1:92-7.CrossRefPubMedGoogle Scholar
  64. 64.
    Ridker PM, Paynter NP, Rifai N, Gaziano JM, Cook NR. C-reactive protein and parental history improve global cardiovascular risk prediction: The Reynolds Risk Score for men. Circulation 2008;118:2243-2251, 4p following 2251.Google Scholar
  65. 65.
    Shah T, Casas JP, Cooper JA, Tzoulaki I, Sofat R, McCormack V, Smeeth L, Deanfield JE, Lowe GD, Rumley A, Fowkes FG, Humphries SE, Hingorani AD. Critical appraisal of CRP measurement for the prediction of coronary heart disease events: New data and systematic review of 31 prospective cohorts. Int J Epidemiol 2009;38:217-31.CrossRefPubMedGoogle Scholar
  66. 66.
    The Atherosclerosis Risk in Communities (ARIC) Study: Design and objectives. The ARIC investigators. Am J Epidemiol 1989;129:687-702.Google Scholar
  67. 67.
    Heiss G, Sharrett AR, Barnes R, Chambless LE, Szklo M, Alzola C. Carotid atherosclerosis measured by B-mode ultrasound in populations: Associations with cardiovascular risk factors in the ARIC study. Am J Epidemiol 1991;134:250-6.PubMedGoogle Scholar
  68. 68.
    Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, Greenland P, Jacob DR Jr, Kronmal R, Liu K, Nelson JC, O’Leary D, Saad MF, Shea S, Szklo M, Tracy RP. Multi-ethnic study of atherosclerosis: Objectives and design. Am J Epidemiol 2002;156:871-81.CrossRefPubMedGoogle Scholar
  69. 69.
    Kronmal RA, McClelland RL, Detrano R, Shea S, Lima JA, Cushman M, Bild DE, Burke GL. Risk factors for the progression of coronary artery calcification in asymptomatic subjects: Results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 2007;115:2722-30.CrossRefPubMedGoogle Scholar
  70. 70.
    Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, Liu K, Shea S, Szklo M, Bluemke DA, O’Leary DH, Tracy R, Watson K, Wong ND, Kronmal RA. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 2008;358:1336-45.CrossRefPubMedGoogle Scholar
  71. 71.
    Muntendam P, McCall C, Sanz J, Falk E, Fuster V. The BioImage Study: Novel approaches to risk assessment in the primary prevention of atherosclerotic cardiovascular disease—study design and objectives. Am Heart J 2010 (in press).Google Scholar
  72. 72.
    Sanz J, Fayad ZA. Imaging of atherosclerotic cardiovascular disease. Nature 2008;451:953-7.CrossRefPubMedGoogle Scholar
  73. 73.
    Underhill HR, Hatsukami TS, Fayad ZA, Fuster V, Yuan C. MRI of carotid atherosclerosis: clinical implications and future directions. Nat Rev Cardiol 2010;7:165-73.CrossRefPubMedGoogle Scholar
  74. 74.
    Fuster V, Lois F, Franco M. Early identification of atherosclerotic disease by noninvasive imaging. Nat Rev Cardiol 2010;7:327-33.CrossRefPubMedGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2010

Authors and Affiliations

  1. 1.Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
  2. 2.The Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R. Kravis Center for Cardiovascular HealthMount Sinai School of MedicineNew YorkUSA

Personalised recommendations