Journal of Nuclear Cardiology

, Volume 17, Issue 5, pp 941–973 | Cite as

Single photon-emission computed tomography

  • Thomas A. Holly
  • Brian G. Abbott
  • Mouaz Al-Mallah
  • Dennis A. Calnon
  • Mylan C. Cohen
  • Frank P. DiFilippo
  • Edward P. Ficaro
  • Michael R. Freeman
  • Robert C. Hendel
  • Diwakar Jain
  • Scott M. Leonard
  • Kenneth J. Nichols
  • Donna M. Polk
  • Prem Soman
ASNC Imaging Guidelines for Nuclear Cardiology Procedures

1. Introduction

The current document is an update of an earlier version of single photon emission tomography (SPECT) guidelines that was developed by the American Society of Nuclear Cardiology. Although that document was only published a few years ago, there have been significant advances in camera technology, imaging protocols, and reconstruction algorithms that prompted the need for a revised document. This publication is designed to provide imaging guidelines for physicians and technologists who are qualified to practice nuclear cardiology. While the information supplied in this document has been carefully reviewed by experts in the field, the document should not be considered medical advice or a professional service. We are cognizant that SPECT technology is evolving rapidly and that these recommendations may need further revision in the near future. Hence, the imaging guidelines described in this publication should not be used in clinical studies until they have been reviewed and...



Dr. Robert Hendel receives grant support from GE Healthcare, is on the Speakers’ Bureau for Astellas Pharma US, and serves on the Advisory Boards for PGx Health, Astellas Pharma US, UnitedHealthcare, and GE Healthcare. Dr. Donna Polk serves on the Data Safety Monitoring Board for Lantheus. Dr. Dennis Calnon serves on the Research Steering Committee for PGx Health. Dr. Christopher Hansen receives grant support from Digirad and is a stock shareholder of General Electric. The authors have no conflicts of interest to disclose except as noted above.


  1. 1.
    Kennedy JA, Yosilevsky G, Przewloka K, Israel O, Frenkel A. 3D spatial resolution map and sensitivity characterization of a dedicated cardiac CZT SPECT camera [abstract]. J Nucl Med 2009;50:107.CrossRefGoogle Scholar
  2. 2.
    Garcia EV, Tsukerman L, Keidar Z. A new solid state, ultra fast cardiac multi-detector SPECT system [abstract]. J Nucl Cardiol 2008;15:S3.CrossRefGoogle Scholar
  3. 3.
    Gambhir SS, Berman DS, Ziffer JA, et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med 2009;50:635-43.CrossRefPubMedGoogle Scholar
  4. 4.
    Bushberg JT, Seibert JA, Leidholt EM, Boone JM. The essential physics of medical imaging. Baltimore, MD: Williams & Wilkins; 1994.Google Scholar
  5. 5.
    Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 3rd ed. Philadelphia, PA: Elsevier Science; 2003.Google Scholar
  6. 6.
    Cullom SJ. Principles of cardiac SPECT imaging. In: DePuey EG, Berman DS, Garcia EV, editors. Cardiac SPECT. 2nd ed. Philadelphia, PA: Lippincott, Williams & Wilkins; 2001. p. 3-16.Google Scholar
  7. 7.
    Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1982;1:113-22.CrossRefPubMedGoogle Scholar
  8. 8.
    Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601-9.CrossRefPubMedGoogle Scholar
  9. 9.
    Bowsher JE, Floyd CE. Treatment of Compton scattering in maximum likelihood, expectation-maximization reconstructions of SPECT images. J Nucl Med 1991;32:1285-91.PubMedGoogle Scholar
  10. 10.
    Xaio J, de Wit TC, Staelen SG, Beekman FJ. Evaluation of 3D Monte Carlo-based scatter correction for 99mTc cardiac perfusion SPECT. J Nucl Med 2006;47:1662-9.Google Scholar
  11. 11.
    Daou D, Pointurier I, Coaguila C, et al. Performance of OSEM and depth-dependent resolution recovery algorithms for the evaluation of global left ventricular function in 201Tl gated myocardial perfusion SPECT. J Nucl Med 2003;44:155-62.PubMedGoogle Scholar
  12. 12.
    DiFilippo FP, Abreu SH, Majmundar H. Collimator integrity. J Nucl Cardiol 2006;13:889-91.CrossRefPubMedGoogle Scholar
  13. 13.
    O’Connor MK. Instrument- and computer-related problems and artifacts in nuclear medicine. Semin Nucl Med 1996;26:256-77.CrossRefPubMedGoogle Scholar
  14. 14.
    Lau YH, Hutton BF, Beekman FJ. Choice of collimator for cardiac SPECT when resolution compensation is included in iterative reconstruction. Eur J Nucl Med 2001;28:39-47.CrossRefPubMedGoogle Scholar
  15. 15.
    Devito RP, Haines EJ, Domnanovitch JR, inventors. Mosaic Imaging Technology, Inc. Non-orbiting tomographic imaging system. US Patent 6242743, June 5, 2001.Google Scholar
  16. 16.
    Sharir T, Ben-Haim S, Merzon K, et al. High-speed myocardial perfusion imaging initial clinical comparison with conventional dual detector anger camera imaging. J Am Coll Cardiol Imaging 2008;1:156-63.Google Scholar
  17. 17.
    Hawman PC, Haines EJ. The cardiofocal collimator: A variable-focus collimator for cardiac SPECT. Phys Med Biol 1994;39:439-50.CrossRefPubMedGoogle Scholar
  18. 18.
    Hasegawa B, Kirch D, Stern D, et al. Single-photon emission tomography with a 12-pinhole collimator. J Nucl Med 1982;23:606-12.PubMedGoogle Scholar
  19. 19.
    Steele PP, Kirch DL, Koss JE. Comparison of simultaneous dual-isotope multipinhole SPECT with rotational SPECT in a group of patients with coronary artery disease. J Nucl Med 2008;49:1080-9.CrossRefPubMedGoogle Scholar
  20. 20.
    Herzog BA, Beuchel RR, Katz R, et al. Nuclear myocardial perfusion imaging with cadmium-zinc-telluride detector technique: Optimized protocol for scan time reduction. J Nucl Med 2010;51:46-51.CrossRefPubMedGoogle Scholar
  21. 21.
    Shin JH, Pokharna HK, Williams KA, Mehta R, Ward RP. SPECT myocardial perfusion imaging with prone-only acquisitions: Correlation with coronary angiography. J Nucl Cardiol 2009;16:590-6.CrossRefPubMedGoogle Scholar
  22. 22.
    Erlandsson K, Kacperski K, van Gramberg D, Hutton BF. Performance evaluation of D-SPECT: A novel SPECT system for nuclear cardiology. Phys Med Biol 2009;54:2635-49.CrossRefPubMedGoogle Scholar
  23. 23.
    Nichols KG, Galt JR. Quality control for SPECT imaging. In: DePuey EG, Berman DS, Garcia EV, editors. Cardiac SPECT imaging. 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2001. p. 17-40.Google Scholar
  24. 24.
    National Electrical Manufacturers Association. NEMA Standards Publication NU 1-2007: Performance measurements of scintillation cameras. Washington, DC: National Electrical Manufacturers Association; 2007.Google Scholar
  25. 25.
    Esser PD, Graham LS. A quality control program for nuclear medicine cameras. In: Henkin RE, editor. Nuclear medicine. 2nd ed. Philadelphia, PA: Mosby; 2006. p. 246-56.Google Scholar
  26. 26.
    DePuey EG. How to detect and avoid myocardial perfusion SPECT artifacts. J Nucl Med 1994;35:699-702.PubMedGoogle Scholar
  27. 27.
    Galt JR, Faber T. Principles of single photon emission computed tomography (SPECT) imaging. In: Christian PE, Bernier DR, Langan JK, editors. Nuclear medicine and PET: Technology and techniques. St. Louis: Mosby; 2003. p. 242-84.Google Scholar
  28. 28.
    Cerqueira MD, Matsuoka D, Ritchie JL, Harp GD. The influence of collimators on SPECT center of rotation measurements: Artifact generation and acceptance testing. J Nucl Med 1988;29:1393-7.PubMedGoogle Scholar
  29. 29.
    Hines H, Kayayan R, Colsher J, et al. National Electrical Manufacturers Association recommendation for implementing SPECT instrumentation quality control. J Nucl Med 2000;41:383-9.PubMedGoogle Scholar
  30. 30.
    Greer KL, Jaszczak RJ, Coleman RE. An overview of a camera-based SPECT system. Med Phys 1982;9:455-63.CrossRefPubMedGoogle Scholar
  31. 31.
    American College of Radiology. ACR Web site. Accessed March 2, 2009.
  32. 32.
    American Association of Physicists in Medicine. AAPM Web site. Accessed March 2, 2009.
  33. 33.
    American Society of Nuclear Cardiology. ASNC imaging guidelines for nuclear cardiology procedures: Introduction of new technology for clinical use. J Nucl Cardiol 2009;16:166.Google Scholar
  34. 34.
    Chang SM, Nabi F, Xu J, Raza U, Mahmarian JJ. Normal stress-only versus standard stress/rest myocardial perfusion imaging: Similar patient mortality with reduced radiation exposure. J Am Coll Cardiol 2010;55:221-30.CrossRefPubMedGoogle Scholar
  35. 35.
    Segall GM, Davis MJ. Prone versus supine thallium myocardial SPECT: A method to decrease artifactual inferior wall defects. J Nucl Med 1989;30:548-55.PubMedGoogle Scholar
  36. 36.
    Kiat H, Van Train KF, Friedman JD, Germano G, Silagan G, Wang FP, et al. Quantitative stress-redistribution thallium-201 SPECT using prone imaging: Methodologic development and validation. J Nucl Med 1992;33:1509-15.PubMedGoogle Scholar
  37. 37.
    Esquerre JP, Coca FJ, Martinez SJ, Guiraud RF. Prone decubitus: A solution to inferior wall attenuation in thallium-201 myocardial tomography. J Nucl Med 1989;30:398-401.PubMedGoogle Scholar
  38. 38.
    Nishina H, Slomka PJ, Abidov A, et al. Combined supine and prone quantitative myocardial perfusion SPECT: Method development and clinical validation in patients with no known coronary artery disease. J Nucl Med 2006;47:51-8.PubMedGoogle Scholar
  39. 39.
    Slomka PJ, Nishina H, Abidov A, et al. Combined quantitative supine-prone myocardial perfusion SPECT improves detection of coronary artery disease and normalcy rates in women. J Nucl Cardiol 2007;14:44-52.CrossRefPubMedGoogle Scholar
  40. 40.
    Friedman J, Van Train K, Maddahi J, Rozanski A, Prigent F, Bietendorf J, et al. “Upward creep” of the heart: A frequent source of false-positive reversible defects during thallium-201 stress-redistribution SPECT. J Nucl Med 1989;30:1718-22.PubMedGoogle Scholar
  41. 41.
    Bateman TM, Berman DS, Heller GV, Brown KA, Cerqueira MD, Verani MS, et al. American Society of Nuclear Cardiology position statement on electrocardiographic gating of myocardial perfusion SPECT scintigrams. J Nucl Cardiol 1999;6:470-1.CrossRefPubMedGoogle Scholar
  42. 42.
    Cullom SJ, Case JA, Bateman TM. Electrocardiographically gated myocardial perfusion SPECT: Technical principles and quality control considerations. J Nucl Cardiol 1998;5:418-25.CrossRefPubMedGoogle Scholar
  43. 43.
    DePuey EG, Nichols K, Dobrinsky C. Left ventricular ejection fraction assessed from gated technetium-99m-sestamibi SPECT. J Nucl Med 1993;34:1871-6.PubMedGoogle Scholar
  44. 44.
    Smanio PE, Watson DD, Segalla DL, Vinson EL, Smith WH, Beller GA. Value of gating of technetium-99m sestamibi single-photon emission computed tomographic imaging. J Am Coll Cardiol 1997;30:1687-92.CrossRefPubMedGoogle Scholar
  45. 45.
    He ZX, Cwajg E, Preslar JS, Mahmarian JJ, Verani MS. Ejection fraction determined by gated myocardial perfusion SPECT with Tl-201 and Tc-99m sestamibi: Comparison with first-pass radionuclide angiography. J Nucl Cardiol 1999;4:412-7.Google Scholar
  46. 46.
    Hansen C. Digital image processing for clinicians, part II: Filtering. J Nucl Cardiol 2002;9:429-37.CrossRefPubMedGoogle Scholar
  47. 47.
    Hansen CL, Kramer M, Rastogi A. Lower accuracy of Tl-201 SPECT in women is not improved by size-based normal databases or Wiener filtering. J Nucl Cardiol 1999;6:177-82.CrossRefPubMedGoogle Scholar
  48. 48.
    King MA, Glick SJ, Penney BC, Schwinger RB, Doherty PW. Interactive visual optimization of SPECT prereconstruction filtering. J Nucl Med 1987;28:1192-8.PubMedGoogle Scholar
  49. 49.
    Hansen C. Digital image processing for clinicians, part III: SPECT reconstruction. J Nucl Cardiol 2002;9:542-9.CrossRefPubMedGoogle Scholar
  50. 50.
    Yester MV. SPECT image reconstruction. In: Henkin RE, editor. Nuclear medicine. 2nd ed. Philadelphia, PA: Mosby; 2006. p. 185-95.Google Scholar
  51. 51.
    Borges-Neto S, Pagnanelli RA, Shaw LJ, et al. Clinical results of a novel wide beam reconstruction methods for shortening scan time of Tc-99m cardiac SPECT perfusion studies. J Nucl Cardiol 2007;14:555-65.CrossRefPubMedGoogle Scholar
  52. 52.
    DePuey EG, Gadiraju R, Clark J, et al. Ordered subset expectation maximization and wide beam reconstruction “half-time” gated myocardial perfusion SPECT functional imaging: A comparison to “full-time” filtered backprojection. J Nucl Cardiol 2008;14:547-63.CrossRefGoogle Scholar
  53. 53.
    DePuey EG, Bommireddipalli S, Clark J, Thompson L, Srour Y. Wide beam reconstruction “quarter-time” gated myocardial perfusion SPECT functional imaging: A comparison to “full-time” ordered subset expectation maximum. J Nucl Cardiol 2009;16:736-52.CrossRefPubMedGoogle Scholar
  54. 54.
    Hansen CL. The role of the translation table in cardiac image display. J Nucl Cardiol 2006;13:571-5.CrossRefPubMedGoogle Scholar
  55. 55.
    Hansen C. Digital image processing for clinicians, Part I: Basics of image formation. J Nucl Cardiol 2002;9:343-9.CrossRefPubMedGoogle Scholar
  56. 56.
    Friedman J, Berman DS, Van Train K, Garcia EV, Bietendorf J, Prigent F, et al. Patient motion in thallium-201 myocardial SPECT imaging. An easily identified frequent source of artifactual defect. Clin Nucl Med 1988;13:321-4.CrossRefPubMedGoogle Scholar
  57. 57.
    Cooper JA, Neumann PH, McCandless BK. Effect of patient motion on tomographic myocardial perfusion imaging. J Nucl Med 1992;33:1566-71.PubMedGoogle Scholar
  58. 58.
    Choi JY, Lee KH, Kim SJ, Kim SE, Kim BT, Lee SH, et al. Gating provides improved accuracy for differentiating artifacts from true lesions in equivocal fixed defects on technetium 99m tetrofosmin perfusion SPECT. J Nucl Cardiol 1998;5:395-401.CrossRefPubMedGoogle Scholar
  59. 59.
    Ficaro EP, Fessler JA, Shreve PD. et al. Simultaneous transmission/emission myocardial perfusion tomography. Diagnostic accuracy of attenuation-corrected 99mTc-sestamibi single-photon emission computed tomography. Circulation 1996;93:463-73.PubMedGoogle Scholar
  60. 60.
    Fricke H, Fricke E, Weise R, et al. A method to remove artifacts in attenuation-corrected myocardial perfusion SPECT. Introduced by misalignment between emission scan and CT-derived attenuation maps. J Nucl Med 2004;45:1619-25.PubMedGoogle Scholar
  61. 61.
    Grossman GB, Garcia EV, Bateman T, et al. Quantitative Tc-99m sestamibi attenuation-corrected SPECT: Development and multicenter trial validation of myocardial perfusion stress gender-independent normal database in obese population. J Nucl Cardiol 2004;11:263-772.CrossRefPubMedGoogle Scholar
  62. 62.
    Weiss AT, Berman DS, Lew AS, et al. Transient ischemic dilation of the left ventricle on stress thallium-201 scintigraphy: A marker of severe and extensive coronary artery disease. J Am Coll Cardiol 1987;9:752-9.CrossRefPubMedGoogle Scholar
  63. 63.
    McLaughlin MG, Danias PG. Transient ischemic dilation: A powerful diagnostic and prognostic finding of stress myocardial perfusion imaging. J Nucl Cardiol 2002;9:663-7.CrossRefPubMedGoogle Scholar
  64. 64.
    Hansen CL, Sangrigoli R, Nkadi E, Kramer M. Comparison of pulmonary uptake with transient cavity dilation after exercise thallium-201 perfusion imaging. J Am Coll Cardiol 1999;33:1323-7.CrossRefPubMedGoogle Scholar
  65. 65.
    Hansen CL, Cen P, Sanchez B, Robinson R. Comparison of pulmonary uptake with transient cavity dilation after dipyridamole Tl-201 perfusion imaging. J Nucl Cardiol 2002;9:47-51.CrossRefPubMedGoogle Scholar
  66. 66.
    Chouraqui P, Rodrigues EA, Berman DS, Maddahi J. Significance of dipyridamole-induced transient dilation of the left ventricle during thallium-201 scintigraphy in suspected coronary artery disease. Am J Cardiol 1990;66:689-94.CrossRefPubMedGoogle Scholar
  67. 67.
    Abidov A, Bax JJ, Hayes SW, et al. Integration of automatically measured transient ischemic dilation ratio into interpretation of adenosine stress myocardial perfusion SPECT for detection of severe and extensive CAD. J Nucl Med 2004;45:1999-2007.PubMedGoogle Scholar
  68. 68.
    Gill JB, Ruddy TD, Newell JB, et al. Prognostic importance of thallium uptake by the lungs during exercise in coronary artery disease. N Engl J Med 1987;317:1486-9.CrossRefPubMedGoogle Scholar
  69. 69.
    Wackers FJT. On the bright side. J Nucl Cardiol 2005;12:378-80.CrossRefPubMedGoogle Scholar
  70. 70.
    Williams KA, Schneider CM. Increased stress right ventricular activity on dual isotope perfusion SPECT: A sign of multivessel and/or left main coronary artery disease. J Am Coll Cardiol 1999;34:420-7.CrossRefPubMedGoogle Scholar
  71. 71.
    Williams KA, Hill KA, Sheridan CM. Noncardiac findings on dual-isotope myocardial perfusion SPECT. J Nucl Cardiol 2003;10:395-402.CrossRefPubMedGoogle Scholar
  72. 72.
    Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. J Nucl Cardiol 2002;9:240-5.CrossRefPubMedGoogle Scholar
  73. 73.
    Tilkemeier PL, Cooke CD, Ficaro EP, et al. ASNC imaging guidelines for nuclear cardiology procedures: Standardized reporting of myocardial perfusion images. J Nucl Cardiol 2009;16:165.Google Scholar
  74. 74.
    Hachamovitch R, Berman DS, Shaw LJ, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: Differential stratification for risk of cardiac death and myocardial infarction. Circulation 1998;97:535-43.PubMedGoogle Scholar
  75. 75.
    Travin MI. The oft neglected rest study. J Nucl Cardiol 2009;15:739-42.Google Scholar
  76. 76.
    Shaw LJ, Hendel RC, Heller GV, et al. Prognostic estimation of coronary artery disease risk with resting perfusion abnormalities and stress ischemia on myocardial perfusion SPECT. J Nucl Cardiol 2009;15:762-73.Google Scholar
  77. 77.
    Berman DS, Kang X, Van Train KF, et al. Comparative prognostic value of automatic quantitative analysis versus semiquantitative visual analysis of exercise myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1998;32:1987-95.CrossRefPubMedGoogle Scholar
  78. 78.
    Leslie WB, Tully SA, Yogendran MS, et al. Prognostic value of automated quantification of 99mTc-sestamibi myocardial perfusion imaging. J Nucl Med 2005;46:204-11.PubMedGoogle Scholar
  79. 79.
    Berman DS, Kang X, Gransar H, et al. Quantitative assessment of myocardial perfusion abnormality on SPECT myocardial perfusion imaging is more reproducible than expert visual analysis. J Nucl Cardiol 2009;16:45-53.CrossRefPubMedGoogle Scholar
  80. 80.
    Iskandrian AS, Garcia EV, Faber T, Mahmarian JJ. Automated assessment of serial SPECT myocardial perfusion images. J Nucl Cardiol 2009;16:6-9.CrossRefPubMedGoogle Scholar
  81. 81.
    Mahmarian JJ, Cerqueira MD, Iskandrian AS. Regadenoson induces comparable left ventricular perfusion defects as adenosine: A quantitative analysis from the ADVANCE MPI 2 Trial. J Am Coll Cardiol Img 2009;2:959-68.Google Scholar
  82. 82.
    Takeishi Y, Sukekawa H, Fujiwara S, et al. Reverse redistribution of technetium-99m-sestamibi following direct PTCA in acute myocardial infarction. J Nucl Med 1996;37:1289-94.PubMedGoogle Scholar
  83. 83.
    Weiss AT, Maddahi J, Lew AS, et al. Reverse redistribution of thallium-201: A sign of nontransmural myocardial infarction with patency of the infarct-related coronary artery. J Am Coll Cardiol 1986;7:61-7.CrossRefPubMedGoogle Scholar
  84. 84.
    Sharir T, Kang X, Germano G, et al. Prognostic value of poststress left ventricular volume and ejection fraction by gated myocardial perfusion SPECT in women and men: Gender-related differences in normal limits and outcomes. J Nucl Cardiol 2006;13:495-506.CrossRefPubMedGoogle Scholar
  85. 85.
    Hendel RC, Budoff MJ, Cardella JF, et al. ACC/AHA/ACR/ASE/ASNC/NASCI/RSNA/SAIP/SCAI/SCCT/SCMR/SIR key data elements and definitions for cardiac imaging. J Am Coll Cardiol 2009;53:91-124.CrossRefPubMedGoogle Scholar
  86. 86.
    Douglas PS, Hendel RC, Cummings JE, et al. ACC/ACR/AHA/ASE/ASNC/HRS/MITA/NASCI/RSNA/SAIP/SCCT/SCMR health policy statement on structured reporting in cardiovascular imaging. J Am Coll Cardiol 2009;53:76-90.CrossRefPubMedGoogle Scholar
  87. 87.
    Hendel RC, Ficaro EP, Williams KA. Timeliness of reporting results of nuclear cardiology procedures. J Nucl Cardiol 2007;14:266.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2010

Authors and Affiliations

  • Thomas A. Holly
    • 1
  • Brian G. Abbott
    • 2
  • Mouaz Al-Mallah
    • 3
  • Dennis A. Calnon
    • 4
  • Mylan C. Cohen
    • 5
  • Frank P. DiFilippo
    • 6
  • Edward P. Ficaro
    • 7
  • Michael R. Freeman
    • 8
  • Robert C. Hendel
    • 9
  • Diwakar Jain
    • 10
  • Scott M. Leonard
    • 1
  • Kenneth J. Nichols
    • 11
  • Donna M. Polk
    • 12
  • Prem Soman
    • 13
  1. 1.Northwestern UniversityChicagoUSA
  2. 2.Warren Alpert Medical School of Brown UniversityProvidenceUSA
  3. 3.Henry Ford HospitalDetroitUSA
  4. 4.MidOhio Cardiology & Vascular ConsultantsColumbusUSA
  5. 5.Maine Cardiology AssociatesSouth PortlandUSA
  6. 6.Cleveland ClinicClevelandUSA
  7. 7.University of MichiganAnn ArborUSA
  8. 8.St. Michael’s Hospital, University of TorontoTorontoUSA
  9. 9.University of Miami Miller School of MedicineMiamiUSA
  10. 10.Drexel University College of MedicineNewton SquareUSA
  11. 11.Long Island Jewish Medical CenterNew Hyde ParkUSA
  12. 12.Hartford HospitalHartfordUSA
  13. 13.UPMC Cardiovascular InstitutePittsburghUSA

Personalised recommendations