Advertisement

Journal of Nuclear Cardiology

, Volume 17, Issue 4, pp 709–718 | Cite as

Recommendations for reducing radiation exposure in myocardial perfusion imaging

  • Manuel D. Cerqueira
  • Kevin C. Allman
  • Edward P. Ficaro
  • Christopher L. Hansen
  • Kenneth J. Nichols
  • Randall C. Thompson
  • William A. Van Decker
  • Marko Yakovlevitch
ASNC Information Statement

Introduction

Radionuclide myocardial perfusion imaging (MPI) using single photon emission computed tomography (SPECT) or positron emission tomography (PET) for the detection of ischemia in patients with known or suspected coronary artery disease (CAD) has widespread clinical utilization and has been shown to have high accuracy and incremental prognostic value. 1- 3 Amidst the recent publicity regarding the increasing use of all types of ionizing radiation in the United States, patients and medical professionals are scrutinizing the need for diagnostic testing and how radiation exposure can be reduced. 4, 5 There are three critical questions that physicians must consider and answer with regard to radiation exposure and performing MPI in a particular patient:
  • Is MPI testing appropriate and necessary in this patient?

  • How can the MPI protocol be optimized to give the lowest possible radiation dose while maintaining diagnostic accuracy?

  • How can new technologies be utilized to provide the lowest...

Notes

Acknowledgments

Dr. Nichols serves as a consultant for IEAE and receives royalties from Syntermed, Inc. The authors have no conflicts of interest to disclose except as noted above.

References

  1. 1.
    Berman DS, Hachamovitch R, Kiat H, et al. Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: A basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1995;26:639-47.CrossRefPubMedGoogle Scholar
  2. 2.
    Giri S, Shaw LJ, Murthy DR, et al. Impact of diabetes on the risk stratification using stress single-photon emission computed tomography myocardial perfusion imaging in patients with symptoms suggestive of coronary artery disease. Circulation 2002;105:32-40.CrossRefPubMedGoogle Scholar
  3. 3.
    Iskandrian AS, Chae SC, Heo J, et al. Independent and incremental prognostic value of exercise single-photon emission computed tomographic (SPECT) thallium imaging in coronary artery disease. J Am Coll Cardiol 1993;22:665-70.CrossRefPubMedGoogle Scholar
  4. 4.
    Beller GA. Importance of consideration of radiation doses from cardiac imaging procedures and risks of cancer. J Nucl Cardiol 2010;17:1-3.CrossRefPubMedGoogle Scholar
  5. 5.
    Cohen MC. Radiation reduction: How long can you go? J Nucl Cardiol 2010;17. doi: 10.1007/s12350-010-9212-8.
  6. 6.
    United States Nuclear Regulatory Commission. Definitions. 10 CFR § 20.1003. http://www.nrc.gov/reading-rm/doc-collections/cfr/part020/part020-1003.html. Revised December 1, 2009. Effective May 21, 1991. Accessed April 1, 2010.
  7. 7.
    Hendel RC, Berman DS, Di Carli MF, et al. 2009 appopriate use criteria for cardiac radionuclide imaging. J Am Coll Cardiol 2009;53:2201-29.CrossRefPubMedGoogle Scholar
  8. 8.
    Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, National Research Council. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. Washington, DC: National Academies Press; 2006.Google Scholar
  9. 9.
    National Council on Radiation Protection and Measurement. Comparative carcinogenicity of ionizing radiation and chemicals. Report No. 096. Washington, DC: National Council on Radiation Protection and Measurement, 1989.Google Scholar
  10. 10.
    Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation 2007;116:1290-305.CrossRefPubMedGoogle Scholar
  11. 11.
    Ward RP, Al-Mallah MH, Grossman GB. American Society of Nuclear Cardiology review of the ACCF/ASNC appropriateness criteria for single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). J Nucl Cardiol 2007;14:e26-38.CrossRefPubMedGoogle Scholar
  12. 12.
    Henzlova MJ, Cerqueira MD, Hansen CL, Taillefer R, Yao S. Imaging guidelines for nuclear cardiology procedures: Stress protocols and tracers. J Nucl Cardiol 2009;16. doi: 10.1007/s12350-009-9062-4.
  13. 13.
    Hansen CL, Goldstein RA, Akinboboye OO, et al. Imaging guidelines for nuclear cardiology procedures: Myocardial perfusion and function: Single photon emission computed tomography. J Nucl Cardiol 2007;14:e39-60.CrossRefPubMedGoogle Scholar
  14. 14.
    Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Gropler RJ, et al. Imaging guidelines for nuclear cardiology procedures: PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol 2009;16. doi: 10.1007/s12350-009-9094-9.
  15. 15.
    Gibson PB, Demus D, Noto R, Hudson W, Johnson LL. Low event rate for stress-only perfusion imaging in patients evaluated for chest pain. J Am Coll Cardiol 2002;39:999-1004.CrossRefPubMedGoogle Scholar
  16. 16.
    Santana CA, Garcia EV, Vansant JP, et al. Gated stress-only 99mTc myocardial perfusion SPECT imaging accurately assesses coronary artery disease. Nucl Med Commun 2003;24:241-9.CrossRefPubMedGoogle Scholar
  17. 17.
    Heller GV, Bateman TM, Johnson LL, et al. Clinical value of attenuation correction in stress-only Tc-99m sestamibi SPECT imaging. J Nucl Cardiol 2004;11:273-81.CrossRefPubMedGoogle Scholar
  18. 18.
    Bateman T, Heller GV, McGhie AI, et al. Multicenter investigation comparing a highly efficient half-time stress-only attenuation correction approach against standard rest-stress Tc-99m SPECT imaging. J Nucl Cardiol 2009;16:726-35.CrossRefPubMedGoogle Scholar
  19. 19.
    Chang SM, Nabi F, Xu J, Raza U, Mahmarian JJ. Normal stress-only versus standard stress/rest myocardial perfusion imaging: Similar patient mortality with reduced radiation exposure. J Am Coll Cardiol 2010;55:221-30.CrossRefPubMedGoogle Scholar
  20. 20.
    Bateman TM, Friedman JD, Heller GV, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: Comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 2006;13:24-33.CrossRefPubMedGoogle Scholar
  21. 21.
    Berman DS, Kang X, Tamarappoo B, et al. Stress thallium-201/rest technetium-99m sequential dual isotope high-speed myocardial perfusion imaging. J Am Coll Cardiol Imaging 2009;2:273-82.Google Scholar
  22. 22.
    Chang H, George RT, Schuleri KH, et al. Prospective electrocardiogram-gated delayed enhanced multidetector computed tomography accurately quantifies infarct size and reduces radiation exposure. J Am Coll Cardiol Imaging 2009;2:412-20.Google Scholar
  23. 23.
    Hansen C. Digital image processing for clinicians, part III: SPECT reconstruction. J Nucl Cardiol 2002;9:542-9.CrossRefPubMedGoogle Scholar
  24. 24.
    Kak A, Slaney M. Algorithms for reconstruction with nondiffracting sources. In: Kak A, Slaney M, editors. Principals of computerized tomographic imaging. New York: IEEE; 1999.Google Scholar
  25. 25.
    DePuey EG, Gadiraju R, Clark J, et al. Ordered subset expectation maximization and wide beam reconstruction “half-time” gated myocardial perfusion SPECT functional imaging: A comparison to “full-time” filtered backprojection. J Nucl Cardiol 2008;14:547-63.CrossRefGoogle Scholar
  26. 26.
    DePuey EG, Bommireddipalli S, Clark J, Thompson L, Srour Y. Wide beam reconstruction “quarter-time” gated myocardial perfusion SPECT functional imaging: A comparison to “full-time” ordered subset expectation maximum. J Nucl Cardiol 2009;16:736-52.CrossRefPubMedGoogle Scholar
  27. 27.
    Venero CV, Heller GV, Bateman TM, et al. A multicenter evaluation of a new postprocessing method with depth-dependent collimator resolution applied to full-time and half-time acquisitions without and with simultaneously acquired attenuation correction. J Nucl Cardiol 2009;16:714-25.CrossRefPubMedGoogle Scholar
  28. 28.
    Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 3rd ed. Philadelphia, PA: Elsevier Science; 2003.Google Scholar
  29. 29.
    He X, Links JM, Gilland KL, Tsui BMW, Frey EC. Comparison of 180° and 360° acquisition for myocardial perfusion SPECT with compensation for attenuation, detector response, and scatter: Monte Carlo and mathematical observer results. J Nucl Cardiol 2006;13:345-53.CrossRefPubMedGoogle Scholar
  30. 30.
    Slomka PJ, Patton JA, Berman DS, Germano G. Advances in technical aspects of myocardial perfusion SPECT imaging. J Nucl Cardiol 2009;16:255-76.CrossRefPubMedGoogle Scholar
  31. 31.
    Garcia EV, Tsukerman L, Keidar Z. A new solid state, ultra fast cardiac multi-detector SPECT system [abstract]. J Nucl Cardiol 2008;15:S3.CrossRefGoogle Scholar
  32. 32.
    Kennedy JA, Yosilevsky G, Przewloka K, Israel O, Frenkel A. 3D spatial resolution map and sensitivity characterization of a dedicated cardiac CZT SPECT camera [abstract]. J Nucl Med 2009;50:107P.CrossRefGoogle Scholar
  33. 33.
    Gambhir SS, Berman DS, Ziffer JA, et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med 2009;50:635-43.CrossRefPubMedGoogle Scholar
  34. 34.
    Marie PY, Djaballah W, Franken PR, et al. OSEM reconstruction, associated with temporal Fourier and depth-dependant resolution recovery filtering, enhances results from sestamibi and 201Tl 16-interval gated SPECT. J Nucl Med 2005;46:1789-95.PubMedGoogle Scholar
  35. 35.
    Sharir T, Slomka PJ, Hayes S, et al. Multicenter trial of high-speed versus conventional single-photon emission computed tomography imaging: Quantitative results of myocardial perfusion and left ventricular function. J Am Coll Cardiol 2010;55:1965-74.CrossRefPubMedGoogle Scholar
  36. 36.
    Ben-Haim S, Van Gramberg D, Bomanji J, et al. Thallium 201 (Tl) myocardial perfusion imaging (MPI) with a novel fast cardiac camera versus conventional camera (SPECT) [abstract]. J Nucl Med 2009;50:124P.Google Scholar
  37. 37.
    Keidar Z, Kagna O, Frenkel A, Israel O. A novel ultrafast cardiac scanner for myocardial perfusion imaging (MPI): Comparison with a standard dual-head camera [abstract]. J Nucl Med 2009;50:125P.Google Scholar
  38. 38.
    Esteves FP, Raggi P, Folks RD, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: Multicenter comparison with standard dual detector cameras. J Nucl Cardiol 2009;16:927-34.CrossRefPubMedGoogle Scholar
  39. 39.
    Sharir T, Ben-Haim S, Merzon K, et al. High-speed myocardial perfusion imaging initial clinical comparison with conventional dual detector anger camera imaging. J Am Coll Cardiol Imaging 2008;1:156-63.Google Scholar
  40. 40.
    Maddahi J, Mendez R, Mahmarian JJ, et al. Prospective multicenter evaluation of rapid, gated SPECT myocardial perfusion upright imaging. J Nucl Cardiol 2009;16:351-7.CrossRefPubMedGoogle Scholar
  41. 41.
    Daou D, Pointurier I, Coaguila C, et al. Performance of OSEM and depth-dependent resolution recovery algorithms for the evaluation of global left ventricular function in 201Tl gated myocardial perfusion SPECT. J Nucl Med 2003;44:155-62.PubMedGoogle Scholar
  42. 42.
    Bowsher JE, Floyd CE. Treatment of Compton scattering in maximum likelihood, expectation-maximization reconstructions of SPECT images. J Nucl Med 1991;32:1285-91.PubMedGoogle Scholar
  43. 43.
    Xaio J, de Wit TC, Staelen SG, Beekman FJ. Evaluation of 3D Monte Carlo-based scatter correction for 99mTc cardiac perfusion SPECT. J Nucl Med 2006;47:1662-9.Google Scholar
  44. 44.
    Cao ZJ, Maunouroy C, Chen CC, et al. Comparison of continuous step-and-shoot versus step-and-shoot acquisition SPECT. J Nucl Med 1996;37:2037-40.PubMedGoogle Scholar
  45. 45.
    Bieszk JA, Hawman EG. Evaluation of SPECT angular sampling effects: Continuous versus step-and-shoot acquisition. J Nucl Med 1987;28:1308-14.PubMedGoogle Scholar
  46. 46.
    Case J, Bateman T, Cullom S. Obtaining optimum and consistent SPEW myocardial counts using an anterior planar view to determine SPECT acquisition times [abstract]. J Am Coll Cardiol 1998;31:82A.Google Scholar

Copyright information

© American Society of Nuclear Cardiology 2010

Authors and Affiliations

  • Manuel D. Cerqueira
    • 1
  • Kevin C. Allman
    • 2
  • Edward P. Ficaro
    • 3
  • Christopher L. Hansen
    • 4
  • Kenneth J. Nichols
    • 5
  • Randall C. Thompson
    • 6
  • William A. Van Decker
    • 7
  • Marko Yakovlevitch
    • 8
  1. 1.Cleveland Clinic (Jb3)ClevelandUSA
  2. 2.Royal Prince Alfred HospitalCamperdownAustralia
  3. 3.University of MichiganAnn ArborUSA
  4. 4.Jefferson Heart InstitutePhiladelphiaUSA
  5. 5.Long Island Jewish Medical CenterNew Hyde ParkUSA
  6. 6.Mid America Heart InstituteLeawoodUSA
  7. 7.Temple University HospitalPhiladelphiaUSA
  8. 8.Summit CardiologySeattleUSA

Personalised recommendations