Journal of Nuclear Cardiology

, Volume 17, Issue 1, pp 27–37 | Cite as

Direct comparison of rest and adenosine stress myocardial perfusion CT with rest and stress SPECT

  • David R. Okada
  • Brian B. Ghoshhajra
  • Ron Blankstein
  • Jose A. Rocha-Filho
  • Leonid D. Shturman
  • Ian S. Rogers
  • Hiram G. Bezerra
  • Ammar Sarwar
  • Henry Gewirtz
  • Udo Hoffmann
  • Wilfred S. Mamuya
  • Thomas J. Brady
  • Ricardo C. Cury
Original Article

Introduction

We have recently described a technique for assessing myocardial perfusion using adenosine-mediated stress imaging (CTP) with dual source computed tomography. SPECT myocardial perfusion imaging (SPECT-MPI) is a widely utilized and extensively validated method for assessing myocardial perfusion. The aim of this study was to determine the level of agreement between CTP and SPECT-MPI at rest and under stress on a per-segment, per-vessel, and per-patient basis.

Methods

Forty-seven consecutive patients underwent CTP and SPECT-MPI. Perfusion images were interpreted using the 17 segment AHA model and were scored on a 0 (normal) to 3 (abnormal) scale. Summed rest and stress scores were calculated for each vascular territory and patient by adding corresponding segmental scores.

Results

On a per-segment basis (n = 799), CTP and SPECT-MPI demonstrated excellent correlation: Goodman-Kruskall γ = .59 (P < .0001) for stress and .75 (P < .0001) for rest. On a per-vessel basis (n = 141), CTP and SPECT-MPI summed scores demonstrated good correlation: Pearson r = .56 (P < .0001) for stress and .66 (P < .0001) for rest. On a per-patient basis (n = 47), CTP and SPECT-MPI demonstrated good correlation: Pearson r = .60 (P < .0001) for stress and .76 (P < .0001) for rest.

Conclusions

CTP compares favorably with SPECT-MPI for detection, extent, and severity of myocardial perfusion defects at rest and stress.

Keywords

Adenosine computed tomography (CT) ischemia myocardial sestamibi SPECT 

Notes

Acknowledgments

The authors would like to thank the CT technologists, the Radiology department nursing staff, and the staff physicians in the Division of Cardiology at the Massachusetts General Hospital.

References

  1. 1.
    Bailey IK, Griffith LS, Rouleau J, Strauss W, Pitt B. Thallium-201 myocardial perfusion imaging at rest and during exercise. Comparative sensitivity to electrocardiography in coronary artery disease. Circulation 1977;55:79-87.PubMedGoogle Scholar
  2. 2.
    Verani MS, Marcus ML, Razzak MA, Ehrhardt JC. Sensitivity and specificity of thallium-201 perfusion scintigrams under exercise in the diagnosis of coronary artery disease. J Nucl Med 1978;19:773-82.PubMedGoogle Scholar
  3. 3.
    Okada RD, Boucher CA, Pohost GM. Quantitative split dose thallium-201 imaging with exercise: A technique for obtaining rest and exercise perfusion images in one setting and markedly reducing the study time. J Am Coll Cardiol 1985;5:70-7.PubMedGoogle Scholar
  4. 4.
    Wackers FJ, Berman DS, Maddahi J, Watson DD, Beller GA, Strauss HW, et al. Technetium-99m hexakis 2-methoxyisobutyl isonitrile: Human biodistribution, dosimetry, safety, and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med 1989;30:301-11.PubMedGoogle Scholar
  5. 5.
    Kahn JK, McGhie I, Akers MS, Sills MN, Faber TL, Kulkarni PV, et al. Quantitative rotational tomography with 201Tl and 99mTc 2-methoxy-isobutyl-isonitrile. A direct comparison in normal individuals and patients with coronary artery disease. Circulation 1989;79:1282-93.PubMedGoogle Scholar
  6. 6.
    Nguyen T, Heo J, Ogilby JD, Iskandrian AS. Single photon emission computed tomography with thallium-201 during adenosine-induced coronary hyperemia: Correlation with coronary arteriography, exercise thallium imaging and two-dimensional echocardiography. J Am Coll Cardiol 1990;16:1375-83.PubMedCrossRefGoogle Scholar
  7. 7.
    Rocco TP, Dilsizian V, Strauss HW, Boucher CA. Technetium-99m isonitrile myocardial uptake at rest. II. Relation to clinical markers of potential viability. J Am Coll Cardiol 1989;14:1678-84.PubMedCrossRefGoogle Scholar
  8. 8.
    Leppo JA, O’Brien J, Rothendler JA, Getchell JD, Lee VW. Dipyridamole-thallium-201 scintigraphy in the prediction of future cardiac events after acute myocardial infarction. N Engl J Med 1984;310:1014-8.PubMedGoogle Scholar
  9. 9.
    Berman DS, Hachamovitch R, Kiat H, Cohen I, Cabico JA, Wang FP, et al. Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: A basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1995;26:639-47.CrossRefPubMedGoogle Scholar
  10. 10.
    Hachamovitch R, Berman DS, Kiat H, Cohen I, Cabico JA, Friedman J, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: Incremental prognostic value and use in risk stratification. Circulation 1996;93:905-14.PubMedGoogle Scholar
  11. 11.
    Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: Differential stratification for risk of cardiac death and myocardial infarction. Circulation 1998;97:535-43.PubMedGoogle Scholar
  12. 12.
    Cury RC, Nieman K, Shapiro MD, Butler J, Nomura CH, Ferencik M, et al. Comprehensive assessment of myocardial perfusion defects, regional wall motion, and left ventricular function by using 64-section multidetector CT. Radiology 2008;248:466-75.CrossRefPubMedGoogle Scholar
  13. 13.
    Hoffmann U, Millea R, Enzweiler C, Ferencik M, Gulick S, Titus J, et al. Acute myocardial infarction: Contrast-enhanced multi-detector row CT in a porcine model. Radiology 2004;231:697-701.CrossRefPubMedGoogle Scholar
  14. 14.
    Mahnken AH, Bruners P, Katoh M, Wildberger JE, Gunther RW, Buecker A. Dynamic multi-section CT imaging in acute myocardial infarction: Preliminary animal experience. Eur Radiol 2006;16:746-52.CrossRefPubMedGoogle Scholar
  15. 15.
    Nieman K, Shapiro MD, Ferencik M, Nomura CH, Abbara S, Hoffmann U, et al. Reperfused myocardial infarction: Contrast-enhanced 64-Section CT in comparison to MR imaging. Radiology 2008;247:49-56.CrossRefPubMedGoogle Scholar
  16. 16.
    Ruzsics B, Lee H, Zwerner PL, Gebregziabher M, Costello P, Schoepf UJ. Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur Radiol 2008;18:2414-24.CrossRefPubMedGoogle Scholar
  17. 17.
    Gerber BL, Belge B, Legros GJ, Lim P, Poncelet A, Pasquet A, et al. Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: Comparison with contrast-enhanced magnetic resonance. Circulation 2006;113:823-33.CrossRefPubMedGoogle Scholar
  18. 18.
    George RT, Jerosch-Herold M, Silva C, Kitagawa K, Bluemke DA, Lima JA, et al. Quantification of myocardial perfusion using dynamic 64-detector computed tomography. Invest Radiol 2007;42:815-22.CrossRefPubMedGoogle Scholar
  19. 19.
    George RT, Silva C, Cordeiro MA, DiPaula A, Thompson DR, McCarthy WF, et al. Multidetector computed tomography myocardial perfusion imaging during adenosine stress. J Am Coll Cardiol 2006;48:153-60.CrossRefPubMedGoogle Scholar
  20. 20.
    Kurata A, Mochizuki T, Koyama Y, Haraikawa T, Suzuki J, Shigematsu Y, et al. Myocardial perfusion imaging using adenosine triphosphate stress multi-slice spiral computed tomography: Alternative to stress myocardial perfusion scintigraphy. Circ J 2005;69:550-7.CrossRefPubMedGoogle Scholar
  21. 21.
    George RT, Arbab-Zadeh A, Miller JM, Kitagawa K, Chang H-J, Bluemke DA, Becker L, et al. Adenosine stress 64- and 256-row detector computed tomography angiography and perfusion imaging: A pilot study evaluating the transmural extent of perfusion abnormalities to predict atherosclerosis causing myocardial ischemia. Circ Cardiovasc Imaging 2009;2:174-82.CrossRefPubMedGoogle Scholar
  22. 22.
    Blankstein R, Shturman LD, Rogers IS, Rocha-Filho JA, Okada DR, Sarwar A, et al. Adenosine induced stress myocardial perfusion imaging using dual source cardiac computed tomography. J Am Coll Cardiol 2009;54:1072-84.CrossRefPubMedGoogle Scholar
  23. 23.
    Blankstein R, Okada DR, Rocha-Filhoa JA, Rybicki F, Brady TJ, Cury RC. Cardiac myocardial perfusion imaging using dual source computed tomography. Int J Cardiovasc Imaging 2009;25:209-16.CrossRefGoogle Scholar
  24. 24.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-42.CrossRefPubMedGoogle Scholar
  25. 25.
    Iskandrian AE, Bateman TM, Belardinelli L, Blackburn B, Cerqueira MD, Hendel RC, et al. Adenosine versus regadenoson comparative evaluation in myocardial perfusion imaging: Results of the ADVANCE phase 3 multicenter international trial. J Nucl Cardiol 2007;14:645-58.CrossRefPubMedGoogle Scholar
  26. 26.
    DePuey EG, Garcia EV. Optimal specificity of thallium-201 SPECT through recognition of imaging artifacts. J Nucl Med 1989;30:441-9.PubMedGoogle Scholar
  27. 27.
    Klem I, Greulich S, Heitner JF, Kim H, Vogelsberg H, Kispert EM, et al. Value of cardiovascular magnetic resonance stress perfusion testing for the detection of coronary artery disease in women. JACC Cardiovasc Imaging 2008;1:436-45.CrossRefPubMedGoogle Scholar
  28. 28.
    Rieber J, Huber A, Erhard I, Mueller S, Schweyer M, Koenig A, et al. Cardiac magnetic resonance perfusion imaging for the functional assessment of coronary artery disease: A comparison with coronary angiography and fractional flow reserve. Eur Heart J 2006;27:1465-71.CrossRefPubMedGoogle Scholar
  29. 29.
    Prigent F, Maddahi J, Garcia E, Van Train K, Friedman J, Berman D. Noninvasive quantification of the extent of jeopardized myocardium in patients with single-vessel coronary disease by stress thallium-201 single-photon emission computerized rotational tomography. Am Heart J 1986;111:578-86.CrossRefPubMedGoogle Scholar
  30. 30.
    Fragasso G, Rossetti E, Dosio F, Gianolli L, Pizzetti G, Cattaneo N, et al. High prevalence of the thallium-201 reverse redistribution phenomenon in patients with syndrome X. Eur Heart J 1996;17:1482-7.PubMedGoogle Scholar
  31. 31.
    Kiat H, Maddahi J, Roy LT, Van Train K, Friedman J, Resser K, et al. Comparison of technetium 99m methoxy isobutyl isonitrile and thallium 201 for evaluation of coronary artery disease by planar and tomographic methods. Am Heart J 1989;117:1-11.CrossRefPubMedGoogle Scholar
  32. 32.
    Matsunari I, Fujino S, Taki J, Senma J, Aoyama T, Wakasugi T, et al. Comparison of defect size between thallium-201 and technetium-99m tetrofosmin myocardial single-photon emission computed tomography in patients with single-vessel coronary artery disease. Am J Cardiol 1996;77:350-4.CrossRefPubMedGoogle Scholar
  33. 33.
    Hendel RC, Bateman TM, Cerqueira MD, Iskandrian AE, Leppo JA, Blackburn B, et al. Initial clinical experience with regadenoson, a novel selective A2A agonist for pharmacologic stress single-photon emission computed tomography myocardial perfusion imaging. J Am Coll Cardiol 2005;46:2069-75.CrossRefPubMedGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2009

Authors and Affiliations

  • David R. Okada
    • 1
  • Brian B. Ghoshhajra
    • 1
  • Ron Blankstein
    • 1
    • 2
  • Jose A. Rocha-Filho
    • 1
  • Leonid D. Shturman
    • 1
  • Ian S. Rogers
    • 1
  • Hiram G. Bezerra
    • 3
  • Ammar Sarwar
    • 1
    • 5
  • Henry Gewirtz
    • 1
  • Udo Hoffmann
    • 1
  • Wilfred S. Mamuya
    • 1
    • 4
  • Thomas J. Brady
    • 1
  • Ricardo C. Cury
    • 1
    • 6
  1. 1.Cardiac MR PET CT Program, Department of Radiology and Division of Cardiology Massachusetts General Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Non-invasive Cardiovascular Imaging Program, Department of Medicine and RadiologyBrigham and Women’s HospitalBostonUSA
  3. 3.Harrington McLaughlin Heart and Vascular InstituteCase Western Reserve UniversityClevelandUSA
  4. 4.Lown Cardiovascular GroupBrooklineUSA
  5. 5.Department of RadiologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUSA
  6. 6.Cardiovascular MR and CT ProgramBaptist Cardiac and Vascular InstituteMiamiUSA

Personalised recommendations