Journal of Nuclear Cardiology

, Volume 16, Issue 4, pp 620–639 | Cite as

Applications of optical coherence tomography in cardiovascular medicine, Part 2

  • Joseph W. Villard
  • Amit S. Paranjape
  • Danielle A. Victor
  • Marc D. Feldman
Advances in Nonnuclear Imaging Technologies


  1. 1.
    Camendzind E, Nordman AJ, Briel M, Bucher HC. Safety of drug eluting stents: Insights from a meta-analysis. Presented at the European Society of Cardiology Annual Congress. 2006; Hotline I.Google Scholar
  2. 2.
    Stone GW, Moses JW, Ellis SG, Schofer J, Dawkins KD, Morice MC, et al. Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N Engl J Med 2007;356:998-1008.PubMedCrossRefGoogle Scholar
  3. 3.
    Stettler C, Wandel S, Allemann S, Kastrati A, Morice MC, Schomig A, et al. Outcomes associated with drug-eluting and bare-metal stents: A collaborative network meta-analysis. Lancet 2007;370:937-48.PubMedCrossRefGoogle Scholar
  4. 4.
    Rizik DG, Klassen KJ. Assessing the landscape of stent thrombosis: The drug-eluting versus bare-metal stent controversy. Am J Cardiol 2008;102:4J-11J.PubMedCrossRefGoogle Scholar
  5. 5.
    Spaulding C. The question of drug-eluting stent safety: Then and now. Am J Cardiol 2008;102:12J-7J.PubMedCrossRefGoogle Scholar
  6. 6.
    Mauri L, Hsieh WH, Massaro JM, Ho KK, D’Agostino R, Cutlip DE. Stent thrombosis in randomized clinical trials of drug-eluting stents. N Engl J Med 2007;356:1020-9.PubMedCrossRefGoogle Scholar
  7. 7.
    King SB III, Smith SC Jr, Hirshfeld JW Jr, Jacobs AK, Morrison DA, Williams DO, et al. 2007 Focused update of the ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: 2007 Writing Group to Review New Evidence and Update the ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention, Writing on Behalf of the 2005 Writing Committee. Circulation 2008;117:261-95.Google Scholar
  8. 8.
    Ellis SG, Colombo A, Grube E, Popma J, Koglin J, Dawkins KD, et al. Incidence, timing, and correlates of stent thrombosis with the polymeric paclitaxel drug-eluting stent: A TAXUS II, IV, V, and VI meta-analysis of 3, 445 patients followed for up to 3 years. J Am Coll Cardiol 2007;49:1043-51.PubMedCrossRefGoogle Scholar
  9. 9.
    US Food and Drug Administration. Update to FDA statement on coronary drug-eluting stents. Available at: Accessed 20 April 2009.
  10. 10.
    Finn AV, Joner M, Nakazawa G, Kolodgie F, Newell J, John MC, et al. Pathological correlates of late drug-eluting stent thrombosis: Strut coverage as a marker of endothelialization. Circulation 2007;115:2435-41.PubMedCrossRefGoogle Scholar
  11. 11.
    Chen BX, Ma FY, Luo W, Ruan JH, Xie WL, Zhao XZ, et al. Neointimal coverage of bare-metal and sirolimus-eluting stents evaluated with optical coherence tomography. Heart 2008;94:566-70.PubMedCrossRefGoogle Scholar
  12. 12.
    Takano M, Inami S, Jang IK, Yamamoto M, Murakami D, Seimiya K, et al. Evaluation by optical coherence tomography of neointimal coverage of sirolimus-eluting stent three months after implantation. Am J Cardiol 2007;99:1033-8.PubMedCrossRefGoogle Scholar
  13. 13.
    Prati F, Cera M, Ramazzotti V, Imola F, Giudice R, Giudice M, et al. From bench to bedside: A novel technique of acquiring OCT images. Circ J 2008;72:839-43.PubMedCrossRefGoogle Scholar
  14. 14.
    Matsumoto D, Shite J, Shinke T, Otake H, Tanino Y, Ogasawara D, et al. Neointimal coverage of sirolimus-eluting stents at 6-month follow-up: Evaluated by optical coherence tomography. Eur Heart J 2007;28:961-7.PubMedCrossRefGoogle Scholar
  15. 15.
    Teirstein PS, Massullo V, Jani S, Popma JJ, Mintz GS, Russo RJ, et al. Catheter-based radiotherapy to inhibit restenosis after coronary stenting. N Engl J Med 1997;336:1697-703.PubMedCrossRefGoogle Scholar
  16. 16.
    Waksman R, White RL, Chan RC, Bass BG, Geirlach L, Mintz GS, et al. Intracoronary gamma-radiation therapy after angioplasty inhibits recurrence in patients with in-stent restenosis. Circulation 2000;101:2165-71.PubMedGoogle Scholar
  17. 17.
    Leon MB, Teirstein PS, Moses JW, Tripuraneni P, Lansky AJ, Jani S, et al. Localized intracoronary gamma-radiation therapy to inhibit the recurrence of restenosis after stenting. N Engl J Med 2001;344:250-6.PubMedCrossRefGoogle Scholar
  18. 18.
    Ajani AE, Waksman R. Intracoronary beta radiation: State of the art. J Interv Cardiol 2001;14:601-9.PubMedCrossRefGoogle Scholar
  19. 19.
    Waksman R, Raizner AE, Yeung AC, Lansky AJ, Vandertie L. Use of localised intracoronary beta radiation in treatment of in-stent restenosis: The INHIBIT randomised controlled trial. Lancet 2002;359:551-7.PubMedCrossRefGoogle Scholar
  20. 20.
    Waksman R, Ajani AE, White RL, Chan RC, Satler LF, Kent KM, et al. Intravascular gamma radiation for in-stent restenosis in saphenous-vein bypass grafts. N Engl J Med 2002;346:1194-9.PubMedCrossRefGoogle Scholar
  21. 21.
    Popma JJ, Suntharalingam M, Lansky AJ, Heuser RR, Speiser B, Teirstein PS, et al. Stents And Radiation Therapy (START) Investigators. Randomized trial of 90Sr/90Y beta-radiation versus placebo control for treatment of in-stent restenosis. Circulation 2002;106:1090-6.PubMedCrossRefGoogle Scholar
  22. 22.
    King SB 3rd, Williams DO, Chougule P, Klein JL, Waksman R, Hilstead R, et al. Endovascular beta-radiation to reduce restenosis after coronary balloon angioplasty: Results of the beta energy restenosis trial (BERT). Circulation 1998;97:2025-30.PubMedGoogle Scholar
  23. 23.
    Raizner AE, Oesterle SN, Waksman R, Serruys PW, Colombo A, Lim YL, et al. Inhibition of restenosis with beta-emitting radiotherapy: Report of the Proliferation Reduction with Vascular Energy Trial (PREVENT). Circulation 2000;102:951-8.PubMedGoogle Scholar
  24. 24.
    Verin V, Popowski Y, de Bruyne B, Baumgart D, Sauerwein W, Lins M, et al. Endoluminal beta-radiation therapy for the prevention of coronary restenosis after balloon angioplasty. The Dose-Finding Study Group. N Engl J Med 2001;344:243-9.PubMedCrossRefGoogle Scholar
  25. 25.
    Sapirstein W, Zuckerman B, Dillard J. FDA approval of coronary-artery brachytherapy. N Engl J Med 2001;344:297-9.PubMedCrossRefGoogle Scholar
  26. 26.
    Grise MA, Massullo V, Jani S, Popma JJ, Russo RJ, Schatz RA, et al. Five-year clinical follow-up after intracoronary radiation: Results of a randomized clinical trial. Circulation 2002;105:2737-40.PubMedCrossRefGoogle Scholar
  27. 27.
    Stone GW, Ellis SG, O’Shaughnessy CD, Martin SL, Satler L, McGarry T, et al. Paclitaxel-eluting stents vs vascular brachytherapy for in-stent restenosis within bare-metal stents: The TAXUS V ISR randomized trial. JAMA 2006;295:1253-63.PubMedCrossRefGoogle Scholar
  28. 28.
    Costa MA, Sabate M, van der Giessen WJ, Kay IP, Cervinka P, Ligthart JMR, et al. Late coronary occlusion after intracoronary brachytherapy. Circulation 1999;100:789-92.PubMedGoogle Scholar
  29. 29.
    Waksman R. Late thrombosis after radiation: Sitting on a time bomb. Circulation 1999;100:780-2.PubMedGoogle Scholar
  30. 30.
    N Novoste Corporation Ga. Clinical trials. Available at: Accessed 25 April 2009.
  31. 31.
    Guagliumi G. ODESSA: A prospective randomized study using OCT to evaluate strut coverage of Sirolimus-eluting, Paclitaxel-eluting, and Zotarolimus-eluting coronary stents. TCT 2008;68.Google Scholar
  32. 32.
    Virmani R, Guagliumi G, Farb A, Musumeci G, Grieco N, Motta T, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: Should we be cautious? Circulation 2004;109:701-5.PubMedCrossRefGoogle Scholar
  33. 33.
    Nebeker JR, Virmani R, Bennett CL, Hoffman JM, Samore MH, Alvarez J, et al. Hypersensitivity cases associated with drug-eluting coronary stents: A review of available cases from the Research on Adverse Drug Events and Reports (RADAR) project. J Am Coll Cardiol 2006;47:175-81.PubMedCrossRefGoogle Scholar
  34. 34.
    Oldenburg AL, Crecea V, Rinne SA, Boppart SA. Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues. Opt Express 2008;16:11525-39.PubMedGoogle Scholar
  35. 35.
    Aaron JS, Oh J, Larson TA, Kumar S, Milner TE, Sokolov KV. Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles. Opt Express 2006;14:12930-43.PubMedCrossRefGoogle Scholar
  36. 36.
    Guagliumi G, Sirbu V. Optical coherence tomography: High resolution intravascular imaging to evaluate vascular healing after coronary stenting. Catheter Cardiovasc Interv 2008;72:237-47.PubMedCrossRefGoogle Scholar
  37. 37.
    Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, et al. Atherosclerotic plaque progression and vulnerability to rupture: Angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 2005;25:2054-61.PubMedCrossRefGoogle Scholar
  38. 38.
    Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 2003;349:2316-25.PubMedCrossRefGoogle Scholar
  39. 39.
    Finn AV, Kolodgie FD, Harnek J, Guerrero LJ, Acampado E, Tefera K, et al. Differential response of delayed healing and persistent inflammation at sites of overlapping sirolimus- or paclitaxel-eluting stents. Circulation 2005;112:270-8.PubMedCrossRefGoogle Scholar
  40. 40.
    Moses JW, Dangas G, Mehran R, Mintz GS. Drug-eluting stents in the real world: How intravascular ultrasound can improve clinical outcome. Am J Cardiol (suppl) 2008;102:24J-8J.CrossRefGoogle Scholar
  41. 41.
    Dangas GD, Mehran R, Moses JW. Long-term safety of drug eluting stents in off-label use: Results of the MATRIX registry. ACC. 2007; Late Breaking Trial Session.Google Scholar
  42. 42.
    Kolodgie FD, Virmani R, Burke AP, Farb A, Weber DK, Kutys R, et al. Pathologic assessment of the vulnerable human coronary plaque. Heart 2004;90:1385-91.PubMedCrossRefGoogle Scholar
  43. 43.
    Libby P. Coronary artery injury and the biology of atherosclerosis: Inflammation, thrombosis, and stabilization. Am J Cardiol 2000;86:3J-8J. discussion 8J-9J.PubMedCrossRefGoogle Scholar
  44. 44.
    Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques: Role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 1993;69:377-81.PubMedCrossRefGoogle Scholar
  45. 45.
    Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 1997;336:1276-82.PubMedCrossRefGoogle Scholar
  46. 46.
    Brezinski ME, Tearney GJ, Weissman NJ, Boppart SA, Bouma BE, Hee MR, et al. Assessing atherosclerotic plaque morphology: Comparison of optical coherence tomography and high frequency intravascular ultrasound. Heart 1997;77:397-403.PubMedGoogle Scholar
  47. 47.
    Kume T, Akasaka T, Kawamoto T, Okura H, Watanabe N, Toyota E, et al. Measurement of the thickness of the fibrous cap by optical coherence tomography. Am Heart J 2006;152:755.e1-4.CrossRefGoogle Scholar
  48. 48.
    Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 2005;111:1551-5.PubMedCrossRefGoogle Scholar
  49. 49.
    Takarada S, Imanishi T, Kubo T, Tanimoto T, Kitabata H, Nakamura N, et al. Effect of statin therapy on coronary fibrous-cap thickness in patients with acute coronary syndrome: Assessment by optical coherence tomography study. Atherosclerosis 2009;202:491–7.Google Scholar
  50. 50.
    Cilingiroglu M, Oh JH, Sugunan B, Kemp NJ, Kim J, Lee S. Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography. Catheter Cardiovasc Interv: Official J Soc Cardiac Angiogr 2006;67(6):915-23.CrossRefGoogle Scholar
  51. 51.
    Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002;106:1640-5.PubMedCrossRefGoogle Scholar
  52. 52.
    Di Mario C, The SH, Madretsma S, van Suylen RJ, Wilson RA, Bom N, et al. Detection and characterization of vascular lesions by intravascular ultrasound: An in vitro study correlated with histology. J Am Soc Echocardiogr 1992;5:135-46.PubMedGoogle Scholar
  53. 53.
    Cilingiroglu M, Oh JH, Sugunan B, Kemp NJ, Kim J, Lee S, et al. Detection of vulnerable plaque in a murine model of atherosclerosis with optical coherence tomography. Catheter Cardiovasc Interv 2006;67:915-23.PubMedCrossRefGoogle Scholar
  54. 54.
    Jang IK, Bouma BE, Kang DH, Park SJ, Park SW, Seung KB, et al. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound. J Am Coll Cardiol 2002;39:604-9.PubMedCrossRefGoogle Scholar
  55. 55.
    Ferencik M, Chan RC, Achenbach S, Lisauskas JB, Houser SL, Hoffmann U, et al. Arterial wall imaging: Evaluation with 16-section multidetector CT in blood vessel phantoms and ex vivo coronary arteries. Radiology 2006;240:708-16.PubMedCrossRefGoogle Scholar
  56. 56.
    Friedrich GJ, Moes NY, Muhlberger VA, Gabl C, Mikuz G, Hausmann D, et al. Detection of intralesional calcium by intracoronary ultrasound depends on the histologic pattern. Am Heart J 1994;128:435-41.PubMedCrossRefGoogle Scholar
  57. 57.
    Mancuso JJ, Cheruku K, Kemp NJ, Milner TE, Banas C, Tio FO, et al. Peripheral artery composition evaluated with OCT. Endovasc Today 2008;7:26-30.Google Scholar
  58. 58.
    Kume T, Akasaka T, Kawamoto T, Watanabe N, Toyota E, Neishi Y, et al. Assessment of coronary arterial plaque by optical coherence tomography. Am J Cardiol 2006;97:1172-5.PubMedCrossRefGoogle Scholar
  59. 59.
    Kume T, Akasaka T, Kawamoto T, Ogasawara Y, Watanabe N, Toyota E, et al. Assessment of coronary arterial thrombus by optical coherence tomography. Am J Cardiol 2006;97:1713-7.PubMedCrossRefGoogle Scholar
  60. 60.
    Meng L, Lv B, Zhang S, Yv B. In vivo optical coherence tomography of experimental thrombosis in a rabbit carotid model. Heart 2008;94:777-80.PubMedCrossRefGoogle Scholar
  61. 61.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W. Optical coherence tomography. Science (New York, NY) 1991;254:1178-81.Google Scholar
  62. 62.
    Brezinski ME, Tearney GJ, Bouma BE, Izatt JA, Hee MR, Swanson EA, et al. Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. Circulation 1996;93:1206-13.PubMedGoogle Scholar
  63. 63.
    Fujimoto JG, Boppart SA, Tearney GJ, Bouma BE, Pitris C, Brezinski ME. High resolution in vivo intra-arterial imaging with optical coherence tomography. Heart 1999;82:128-33.PubMedGoogle Scholar
  64. 64.
    Davies MJ, Thomas AC. Plaque fissuring—the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 1985;53:363-73.PubMedCrossRefGoogle Scholar
  65. 65.
    Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20:1262-75.PubMedGoogle Scholar
  66. 66.
    Krombach F, Munzing S, Allmeling AM, Gerlach JT, Behr J, Dorger M. Cell size of alveolar macrophages: An interspecies comparison. Environ Health Perspect 1997;105(Suppl 5):1261-3.PubMedCrossRefGoogle Scholar
  67. 67.
    Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 2003;107:113-9.PubMedCrossRefGoogle Scholar
  68. 68.
    Adler DC, Huang SW, Huber R, Fujimoto JG. Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. Opt Express 2008;16:4376-93.PubMedCrossRefGoogle Scholar
  69. 69.
    Oh J, Feldman MD, Kim J, Sanghi P, Do D, Mancuso JJ, et al. Detection of macrophages in atherosclerotic tissue using magnetic nanoparticles and differential phase optical coherence tomography. J Biomed Opt 2008; in press.Google Scholar
  70. 70.
    Kim J, Oh J, Kang HW, Feldman MD, Milner TE. Photothermal response of superparamagnetic iron oxide nanoparticles. Lasers Surg Med 2008;40:415-21.PubMedCrossRefGoogle Scholar
  71. 71.
    Oldenburg AL, Gunther JR, Boppart SA. Imaging magnetically labeled cells with magnetomotive optical coherence tomography. Opt Lett 2005;30(7):747-9.PubMedCrossRefGoogle Scholar
  72. 72.
    Vengrenyuk Y, Carlier S, Xanthos S, Cardoso L, Ganatos P, Virmani R, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci USA 2006;103:14678-83.PubMedCrossRefGoogle Scholar
  73. 73.
    Oldenburg A, Toublan F, Suslick K, Wei A, Boppart S. Magnetomotive contrast for in vivo optical coherence tomography. Opt Express 2005;13:6597-614.PubMedCrossRefGoogle Scholar
  74. 74.
    Lee TM, Oldenburg AL, Sitafalwalla S, Marks DL, Luo W, Toublan FJ, et al. Engineered microsphere contrast agents for optical coherence tomography. Opt Lett 2003;28:1546-8.PubMedCrossRefGoogle Scholar
  75. 75.
    Yang C. Molecular contrast optical coherence tomography: A review. Photochem Photobiol 2005;81:215-37.PubMedCrossRefGoogle Scholar
  76. 76.
    Ma L, Feldman MD, Tam J, Tam J, Rigdon D, Villard JW, et al. Small nanoclusters (nanoroses) by assembly of nanoparticle building blocks with high near infrared absorbance for cellular imaging and therapy. Abstracts of Papers, 238th ACS National Meeting. 2009; Washington, DC, United States.Google Scholar
  77. 77.
    Oh J, Feldman MD, Kim J, Kang HW, Sanghi P, Milner TE. Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography. Lasers Surg Med 2007;39:266-72.PubMedCrossRefGoogle Scholar
  78. 78.
    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003;100:13549-54.PubMedCrossRefGoogle Scholar
  79. 79.
    Huang X, El-Sayed I, Qian W, El-Sayed M. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006;128:2115-20.PubMedCrossRefGoogle Scholar
  80. 80.
    O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett (Amsterdam, Netherlands) 2004;209:171-6.Google Scholar
  81. 81.
    Jaffer FA, Weissleder R. Molecular imaging in the clinical arena. JAMA 2005;293:855-62.PubMedCrossRefGoogle Scholar
  82. 82.
    Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol 2001;19:316-7.PubMedCrossRefGoogle Scholar
  83. 83.
    Paranjape AS, Baranov S, Kuranov R, Ma L, Villard JW, Feldman MD, et al. Depth-resolved detection of nanoparticles in tissue macrophages using Phase-Sensitive Optical Coherence Tomography. (In preparation) 2009.Google Scholar
  84. 84.
    Patil CA, Bosschaart N, Keller MD, van Leeuwen TG, Mahadevan-Jansen A. Combined Raman spectroscopy and optical coherence tomography device for tissue characterization. Opt Lett 2008;33:1135-7.PubMedCrossRefGoogle Scholar
  85. 85.
    Silveira L Jr, Sathaiah S, Zangaro RA, Pacheco MT, Chavantes MC, Pasqualucci CA. Correlation between near-infrared Raman spectroscopy and the histopathological analysis of atherosclerosis in human coronary arteries. Lasers Surg Med 2002;30:290-7.PubMedCrossRefGoogle Scholar
  86. 86.
    Nogueira GV, Silveira L, Martin AA, Zangaro RA, Pacheco MT, Chavantes MC, et al. Raman spectroscopy study of atherosclerosis in human carotid artery. J Biomed Opt 2005;10(03):031117.PubMedCrossRefGoogle Scholar
  87. 87.
    Buschman HP, Motz JT, Deinum G, Römer TJ, Fitzmaurice M, Kramer JR, et al. Diagnosis of human coronary atherosclerosis by morphology-based Raman spectroscopy. Cardiovasc Pathol 2001;10:59-68.PubMedCrossRefGoogle Scholar
  88. 88.
    Romer TJ, Brennan JF 3rd, Puppels GJ, Zwinderman AH, van Duinen SG, van der Laarse A, et al. Intravascular ultrasound combined with Raman spectroscopy to localize and quantify cholesterol and calcium salts in atherosclerotic coronary arteries. Arterioscler Thromb Vasc Biol 2000;20:478-83.PubMedGoogle Scholar
  89. 89.
    Caplan JD, Waxman S, Nesto RW, Muller JE. Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques. J Am Coll Cardiol 2006;47:C92-6.PubMedCrossRefGoogle Scholar
  90. 90.
    Moreno PR, Lodder RA, Purushothaman KR, Charash WE, O’Connor WN, Muller JE. Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 2002;105:923-7.PubMedCrossRefGoogle Scholar
  91. 91.
    I InfraReDx. New insight into coronary artery disease. Available at: Accessed 29 April 2009.
  92. 92.
    Kawase Y, Suzuki Y, Ikeno F, Yoneyama R, Hoshino K, Ly HQ, et al. Comparison of nonuniform rotational distortion between mechanical IVUS and OCT using a phantom model. Ultrasound Med Biol 2007;33:67-73.PubMedCrossRefGoogle Scholar
  93. 93.
    Herz PR, Chen Y, Aguirre AD, Schneider K, Hsiung P, Fujimoto JG, et al. Micromotor endoscope catheter for in vivo, ultrahigh-resolutionoptical coherence tomography. Opt Lett 2004;29:2261-3.PubMedCrossRefGoogle Scholar
  94. 94.
    Madou M. Fundamentals of microfabrication: The science of miniaturization. 2nd ed. New York, NY: CRC Press; 2002.Google Scholar
  95. 95.
    Kim KH, Park BH, Maguluri GN, Lee TW, Rogomentich FJ, Bancu MG, et al. Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography. Opt Express 2007;15:18130-40.PubMedCrossRefGoogle Scholar
  96. 96.
    Yeh DT, Oralkan O, Wygant IO, O’Donnell M, Khuri-Yakub BT. 3-D ultrasound imaging using a forward-looking CMUT ring array for intravascular/intracardiac applications. Ultrasonics Ferroelec Freq Control IEEE Trans 2006;53:1202-11.CrossRefGoogle Scholar
  97. 97.
    Twersky V. Absorption and multiple scattering by biological suspensions. J Opt Soc Am 1970;60:1084.PubMedCrossRefGoogle Scholar
  98. 98.
    Steinke JM, Shepherd AP. Role of light-scattering in whole-blood oximetry. IEEE Trans Biomed Eng 1986;33:294-301.PubMedCrossRefGoogle Scholar
  99. 99.
    Roggan A, Friebel M, Dorschel K, Hahn A, Muller G. Optical properties of circulating human blood in the wavelength range 400-2500 NM. J Biomed Opt 1999;4:36-46.CrossRefGoogle Scholar
  100. 100.
    Villard JW, Feldman MD, Kim J, Milner TE, Freeman GL. Use of a blood substitute to determine instantaneous murine right ventricular thickening with optical coherence tomography. Circulation 2002;105:1843-9.PubMedCrossRefGoogle Scholar
  101. 101.
    de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 2003;28:2067-9.PubMedCrossRefGoogle Scholar
  102. 102.
    Yun S, Tearney G, de Boer J, Iftimia N, Bouma B. High-speed optical frequency-domain imaging. Opt Express 2003;11:2953-63.PubMedCrossRefGoogle Scholar
  103. 103.
    Yun SH, Boudoux C, Pierce MC, Boer JFD, Tearney GJ, Bouma BE. Extended-cavity semiconductor wavelength-swept laser for biomedical imaging. Photon Technol Lett IEEE 2004;16:293-5.CrossRefGoogle Scholar
  104. 104.
    Yun SH, Boudoux C, Tearney GJ, Bouma BE. High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. Opt Lett 2003;28:1981-3.PubMedCrossRefGoogle Scholar
  105. 105.
    Huber R, Wojtkowski M, Fujimoto JG. Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography. Opt Express 2006;14:3225-37.PubMedCrossRefGoogle Scholar
  106. 106.
    Huber R, Adler DC, Fujimoto JG. Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt Lett 2006;31:2975-7.PubMedCrossRefGoogle Scholar
  107. 107.
    Nadkarni SK, Pierce MC, Park BH, de Boer JF, Whittaker P, Bouma BE, et al. Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography. J Am Coll Cardiol 2007;49:1474-81.PubMedCrossRefGoogle Scholar
  108. 108.
    Bauriedel G, Hutter R, Welsch U, Bach R, Sievert H, Luderitz B. Role of smooth muscle cell death in advanced coronary primary lesions: Implications for plaque instability. Cardiovasc Res 1999;41:480-8.PubMedCrossRefGoogle Scholar
  109. 109.
    Newby AC, Zaltsman AB. Fibrous cap formation or destruction—the critical importance of vascular smooth muscle cell proliferation, migration and matrix formation. Cardiovasc Res 1999;41:345-60.PubMedCrossRefGoogle Scholar
  110. 110.
    Rekhter MD, Hicks GW, Brammer DW, Hallak H, Kindt E, Chen J, et al. Hypercholesterolemia causes mechanical weakening of rabbit atheroma: Local collagen loss as a prerequisite of plaque rupture. Circ Res 2000;86:101-8.PubMedGoogle Scholar
  111. 111.
    Nadkarni SK, Bouma BE, Yelin D, Gulati A, Tearney GJ. Laser speckle imaging of atherosclerotic plaques through optical fiber bundles. J Biomed Opt 2008;13:054016.PubMedCrossRefGoogle Scholar
  112. 112.
    Oh WY, Yun SH, Vakoc BJ, Shishkov M, Desjardins AE, Park BH, et al. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing. Opt Express 2008;16:1096-103.PubMedCrossRefGoogle Scholar
  113. 113.
    Bovik AC. The handbook of image and video processing. 2nd ed. New York, NY: Academic Press; 2005.Google Scholar
  114. 114.
    Iftimia N, Bouma BE, Tearney GJ. Speckle reduction in optical coherence tomography by “path length encoded’’ angular compounding. J Biomed Opt 2003;8:260-3.PubMedCrossRefGoogle Scholar
  115. 115.
    Pircher M, Gotzinger E, Leitgeb R, Fercher AF, Hitzenberger CK. Speckle reduction in optical coherence tomography by frequency compounding. J Biomed Opt 2003;8:565-9.PubMedCrossRefGoogle Scholar
  116. 116.
    Ozcan A, Bilenca A, Desjardins AE, Bouma BE, Tearney GJ. Speckle reduction in optical coherence tomography images using digital filtering. J Opt Soc Am A 2007;24:1901-10.CrossRefGoogle Scholar
  117. 117.
    Adler DC, Ko TH, Fujimoto JG. Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter. Opt Lett 2004;29:2878-80.PubMedCrossRefGoogle Scholar
  118. 118.
    Tearney GJ, Bouma BE. Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis. Opt Lett 2002;27:533-5.PubMedCrossRefGoogle Scholar
  119. 119.
    Huang C, Liu B, Brezinski ME. Ultrasound-enhanced optical coherence tomography: Improved penetration and resolution. J Opt Soc Am A 2008;25:938-46.CrossRefGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2009

Authors and Affiliations

  • Joseph W. Villard
    • 1
  • Amit S. Paranjape
    • 2
  • Danielle A. Victor
    • 3
  • Marc D. Feldman
    • 1
  1. 1.Division of CardiologyUniversity of Texas Health Science Center in San Antonio and the South Texas Veterans Affairs Health SystemSan AntonioUSA
  2. 2.Department of Biomedical EngineeringUniversity of Texas at AustinAustinUSA
  3. 3.University of Texas Health Science Center in San AntonioSan AntonioUSA

Personalised recommendations