Journal of Nuclear Cardiology

, Volume 16, Issue 2, pp 255–276 | Cite as

Advances in technical aspects of myocardial perfusion SPECT imaging

  • Piotr J. SlomkaEmail author
  • James A. Patton
  • Daniel S. Berman
  • Guido Germano
Major Achievements in Nuclear Cardiology

Although myocardial perfusion SPECT (MPS) imaging is widely used in current clinical practice, it suffers from some fundamental limitations including long image acquisition, low image resolution, and patient radiation dose. In the last two decades, MPS was performed most commonly by standard dual-head scintillation cameras with parallel-hole collimators, typically configured in a 90° detector geometry and image reconstruction based on standard filtered-back projection algorithms. The required scan times were as along as 15-20 minutes for each stress and rest MPS acquisition to provide adequate imaging statistics, resulting in long overall test times and frequent artifacts caused by patient motion during the scan as well as compromised patient comfort. Recently, it has become very important to address these limitations, since MPS has new competitors in the non-invasive imaging arena most notably coronary CT angiography (CCTA), which allow diagnostic imaging in a very short time. In...


Attenuation Correction Iterative Reconstruction Order Subset Expectation Maximization Myocardial Perfusion SPECT Cadmium Zinc Telluride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Daniel Berman has equity position in Spectrum Dynamics, Inc. We would like to acknowledge help of the following individuals who have sent material, data, and images relating to specific technologies: Gordon DePuey, Columbia University, NYC; Gary Heller University of Connecticut School of Medicine CT; Ernest V. Garcia, Emory University, Atlanta, GA; Hans Vija, Siemens Medical Solutions, Hoffman Estates, IL; Horace Hines and Angela Da Silva Philips, Malpitas, CA; Dennis Kirch, Nuclear Research, Denver, CO; Dalia Sherry, Spectrum Dynamics (Haifa, Israel); Terri Garner (CardiArc, In, TX); Richard Conwell (Digirad, San Diego, CA); Frank Anstett (GE HealthCare).

In addition, we would like to thank Joyoni Dey, University of Massachusetts, Worcester, and Gillian Haemer, University of Southern California, LA, for comments and proofreading the text.


  1. 1.
    Slomka PJ, Berman DS, Germano G. Applications and software techniques for integrated cardiac multimodality imaging. Expert Rev Cardiovasc Ther 2008;6:27-41.CrossRefPubMedGoogle Scholar
  2. 2.
    Einstein AJ, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 2007;298:317-23.CrossRefPubMedGoogle Scholar
  3. 3.
    Babla H, Bai C, Conwell R. A triple-head solid state camera for cardiac single photon emission tomography (SPECT). In: Franks LA, Burger A, James RB, Barber HB, Doty FP, Roehrig H, editors. Proceedings of the SPIE. vol. 6319. 2005. p. 63190M.Google Scholar
  4. 4.
    Lewin HC, Hyun MC. A clinical comparison of an upright triple-head digital detector system to a standard supine dual-head gamma camera (abstract). J Nucl Cardiol 2005;12:113-113.CrossRefGoogle Scholar
  5. 5.
    Bai C, Conwell R, Babla H, et al. Improving image quality and imaging efficiency using nSPEED. Accessed 30 May 2008.
  6. 6.
    Maddahi J, Mahmarian J, Mendez R, et al. Prospective multi-center evaluation of rapid gated SPECT myocardial perfusion upright imaging (abstract). J Nucl Med 2008;49:2P.Google Scholar
  7. 7. Accessed 30 May 2008.
  8. 8.
    Madsen MT. Recent advances in SPECT imaging. J Nucl Med 2007;48:661-73.CrossRefPubMedGoogle Scholar
  9. 9.
    Arlt R, Rundquist DE. Room temperature semiconductor detectors for safeguards measurements. Nucl Instrum Methods Phys Res A 1996;380:455-61.CrossRefGoogle Scholar
  10. 10.
    O’Connor M. Evaluation of the CardiArc dedicated cardiac system (unpublished independent evaluation). Rochester, MN: Mayo Clinic; 2005.Google Scholar
  11. 11.
    Sharir T, Ben-Haim S, Merzon K, et al. High-speed myocardial perfusion imaging Initial clinical comparison with conventional dual detector anger camera imaging. J Am Coll Cardiol Cardiovasc Imaging 2008;1:156-63.Google Scholar
  12. 12.
    Rousso B, Nagler M. Spectrum Dynamics LLC, assignee. Multi-dimensional image reconstruction. US patent 7176466. 13 Feb 2007.Google Scholar
  13. 13.
    Hines H, Kayayan R, Colsher J, et al. Recommendations for implementing SPECT instrumentation quality control. Eur J Nucl Med Mol Imaging 1999;26:527-32.CrossRefGoogle Scholar
  14. 14.
    Patton J, Sandler M, Berman D, et al. D-SPECT: A new solid state camera for high speed molecular imaging. Soc Nuclear Med 2006;47:189-189.Google Scholar
  15. 15.
    Ben-Haim S, Hutton B, Van Gramberg D, et al. Simultaneous dual isotope myocardial perfusion scintigraphy (DI MPS)—Initial experience with fast D-SPECT (abstract). J Nucl Cardiol 2008;15:S2.Google Scholar
  16. 16.
    Berman D, SW H, Wolak A, et al. Stress thallium-201/rest Tc-99m sequential dual isotope high-speed myocardial perfusion imaging. Circulation 2008;118:S1010.Google Scholar
  17. 17.
    Sharir T, Ben Haim S, Slomka PJ, et al. Validation of quantitative analysis of high-speed myocardial perfusion imaging: Comparison to conventional SPECT imaging (abstract). J Nucl Cardiol 2008;15:S4.CrossRefGoogle Scholar
  18. 18.
    Jaszczak RJ, Li J, Wang H, Zalutsky MR, Coleman RE. Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT. Phys Med Biol 1994;39:425-37.CrossRefPubMedGoogle Scholar
  19. 19.
    Schramm NU, Ebel G, Engeland U, Schurrat T, Behe M, Behr TM. High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci 2003;50:315-20.CrossRefGoogle Scholar
  20. 20.
    Beekman FJ, Vastenhouw B. Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol 2004;49:4579-92.CrossRefPubMedGoogle Scholar
  21. 21.
    Funk T, Kirch DL, Koss JE, Botvinick E, Hasegawa BH. A novel approach to multipinhole SPECT for myocardial perfusion imaging. J Nucl Med 2006;47:595-602.PubMedGoogle Scholar
  22. 22.
    Metzler SD, Bowsher JE, Smith MF, Jaszczak RJ. Analytic determination of pinhole collimator sensitivity with penetration. IEEE Trans Med Imaging 2001;20:730-41.CrossRefPubMedGoogle Scholar
  23. 23.
    Funk T, Després P, Barber WC, Shah KS, Hasegawa BH. A multipinhole small animal SPECT system with submillimeter spatial resolution. Med Phys 2006;33:1259-68.Google Scholar
  24. 24.
    Steele PP, Kirch DL, Koss JE. Comparison of simultaneous dual-isotope multipinhole SPECT with rotational SPECT in a group of patients with coronary artery disease. J Nucl Med 2008;49:1080.CrossRefPubMedGoogle Scholar
  25. 25.
    Volokh L, Hugg J, Blevis I, Asma E, Jansen F, Manjeshwar R. Effect of detector energy response on image quality of myocardial perfusion SPECT. Paper presented at IEEE nuclear science symposium and medical imaging conference, 19–26, 2008; Dresden.Google Scholar
  26. 26.
    Blevis I, Tsukerman L, Volokh L, Hugg J, Jansen F, Bouhnik J. CZT gamma camera with pinhole collimator: Spectral measurements. Paper presented at IEEE 2008 nuclear science and medical imaging conference, 2008; Dreseden, Germany.Google Scholar
  27. 27.
    Garcia EV, Tsukerman L, Keidar Z. 2.05: A new solid state, ultra fast cardiac multi-detector SPECT system. J Nucl Cardiol 2008;15:S3-S3.CrossRefGoogle Scholar
  28. 28.
    Hawman PC, Haines EJ. The cardiofocal collimator: A variable focus collimator for cardiac SPECT. Phys Med Biol 1994;39:439-50.CrossRefPubMedGoogle Scholar
  29. 29.
    Vija A, Hawman E, Engdahl J. Analysis of a SPECT OSEM reconstruction method with 3D beam modeling and optional attenuation correction: Phantom studies. Paper presented at IEEE nuclear science symposium and medical imaging conference, 2003.Google Scholar
  30. 30.
    Römer W, Reichel N, Vija HA, et al. Isotropic reconstruction of SPECT data using OSEM3D: Correlation with CT. Acad Radiol 2006;13:496-502.CrossRefPubMedGoogle Scholar
  31. 31.
    Vija H, Chapman J, Ray M. IQ•SPECT technology white paper. Siemens Medical Solutions, USA. Mol Imaging 2008;1–7.Google Scholar
  32. 32.
    Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1982;1:113-22.CrossRefPubMedGoogle Scholar
  33. 33.
    Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 1984;8:306-16.PubMedGoogle Scholar
  34. 34.
    Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601-9.CrossRefPubMedGoogle Scholar
  35. 35.
    El Fakhri G, Buvat I, Benali H, Todd-Pokropek A, Di Paola R. Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. J Nucl Med 2000;41:1400-8.PubMedGoogle Scholar
  36. 36.
    Metz CE. The geometric transfer function component for scintillation camera collimators with straight parallel holes. Phys Med Biol 1980;25:1059-70.CrossRefPubMedGoogle Scholar
  37. 37.
    Kadrmas DJ, Frey EC, Karimi SS, Tsui BMW. Fast implementation of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction. Phys Med Biol 1998;43:857-73.CrossRefPubMedGoogle Scholar
  38. 38.
    Ye J, Song X, Zhao Z, Da Silva AJ, Wiener JS, Shao L. Iterative SPECT reconstruction using matched filtering for improved image quality. IEEE Nucl Sci Symp Conf Rec 2006;4.Google Scholar
  39. 39.
    Ye J, Shao L, Zhao Z, Durbin M. Iterative reconstruction with enhanced noise control filtering. WO patent WO/2007/034,342; 2007.Google Scholar
  40. 40.
    Van Laere K, Koole M, Lemahieu I, Dierckx R. Image filtering in single-photon emission computed tomography: Principles and applications. Comput Med Imaging Graph 2001;25:127-33.CrossRefPubMedGoogle Scholar
  41. 41.
    Venero CV, Ahlberg AW, Bateman TM, et al. Enhancement of nuclear cardiac laboratory efficiency—Multicenter evaluation of a new post-processing method with depth-dependent collimator resolution applied to full and half-time acquisitions. J Nucl Cardiol 2008;15:S4.Google Scholar
  42. 42.
    Bateman TM, Heller GV, McGhie AI, et al. 2.04: Multicenter investigation comparing a highly efficient half-time stress-only attenuation correction approach against standard rest-stress Tc-99m SPECT imaging. J Nucl Cardiol 2008;15:S3-S3.CrossRefGoogle Scholar
  43. 43.
    Tsui BMW, Hu HB, Gilland DR, Gullberg GT. Implementation of simultaneous attenuation and detector response correction in SPECT. IEEE Trans Nucl Sci 1988;35:778-83.CrossRefGoogle Scholar
  44. 44.
    DePuey E, Gadiraju R, Clark J, Thompson L, Anstett F, Shwartz S. OSEM and wide beam reconstruction (WBR) “half-time” gated myocardial perfusion SPECT functional imaging: A comparison to “full-time” filtered back projection. J Nucl Cardiol 2008;15:547-63.Google Scholar
  45. 45.
    Tsui BMW, Gullberg GT. The geometric transfer-function for cone and fan beam collimators. Phys Med Biol 1990;35:81-93.CrossRefPubMedGoogle Scholar
  46. 46.
    Tsui BMW, Frey EC, Zhao X, Lalush DS, Johnston RE, McCartney WH. The importance and implementation of accurate 3D compensation methods for quantitative SPECT. Phys Med Biol 1994;39:509-30.CrossRefPubMedGoogle Scholar
  47. 47.
    Bruyant PP. Analytic and iterative reconstruction algorithms in SPECT. J Nucl Med 2002;43:1343-58.PubMedGoogle Scholar
  48. 48.
    Green PJ. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging 1990;9:84-93.CrossRefPubMedGoogle Scholar
  49. 49.
    Alenius S, Ruotsalainen U. Bayesian image reconstruction for emission tomography based on median root prior. Eur J Nucl Med Mol Imaging 1997;24:258-65.Google Scholar
  50. 50.
    Vija AH, Zeintl J, Chapman JT, Hawman EG, Hornegger J. Development of rapid SPECT acquisition protocol for myocardial perfusion imaging. IEEE Nucl Sci Symp Conf Rec 2006;3:1811-6.Google Scholar
  51. 51.
    Ficaro EP, Kritzman JN, Corbett JR. 15.34: Effect of reconstruction parameters and acquisition times on myocardial perfusion distribution in normals. J Nucl Cardiol 2008;15:S20-S20.CrossRefGoogle Scholar
  52. 52.
    Zeintl J, Ding X, Vija AH, Hawman EG, Hornegger J, Kuwert T. Estimation accuracy of ejection fraction in gated cardiac SPECT/CT imaging using iterative reconstruction with 3D resolution recovery in rapid acquisition protocols. 2007 NSS ‘07 IEEE Nucl Sci Symp Conf Rec 2007;6:4491-6.Google Scholar
  53. 53.
    Ultraspect. Accessed 6 Sept 2008.
  54. 54.
    Borges-Neto SPR, Shaw LK, et al. Clinical results of a novel wide beam reconstruction method for shortening scan time of Tc-99m cardiac SPECT perfusion studies. J Nucl Cardiol 2007;14:555-65.CrossRefPubMedGoogle Scholar
  55. 55.
    DePuey EG, Bommireddipalli S, Beletsky I, et al. 2.01: Quarter-time myocardial perfusion SPECT wide beam reconstruction. J Nucl Cardiol 2008;15:S2-S2.CrossRefGoogle Scholar
  56. 56.
    Slomka PJ, Nishina H, Berman DS, et al. “Motion-frozen” display and quantification of myocardial perfusion. J Nucl Med 2004;45:1128-34.PubMedGoogle Scholar
  57. 57.
    Suzuki Y, Slomka PJ, Wolak A, et al. Motion-frozen myocardial perfusion SPECT improves detection of coronary artery disease in obese patients. J Nucl Med 2008;49:1075-9.CrossRefPubMedGoogle Scholar

Copyright information

© American Society of Nuclear Cardiology 2009

Authors and Affiliations

  • Piotr J. Slomka
    • 1
    Email author
  • James A. Patton
    • 2
  • Daniel S. Berman
    • 1
  • Guido Germano
    • 1
  1. 1.Departments of Imaging and Medicine, AIM ProgramCedars-Sinai Medical CenterLos AngelesUSA
  2. 2.Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations