Contribution of honey in nutrition and human health: a review

  • Jose Miguel Alvarez-Suarez
  • Sara Tulipani
  • Stefania Romandini
  • Enrico Bertoli
  • Maurizio Battino
Review

Abstract

Our manuscript shows that honey has a variety of positive nutritional and health effects. It contains at least 181 substances, is a supersaturated solution of sugars, and contains small amounts of proteins, enzymes, amino acids, minerals, trace elements, vitamins, aroma compounds and polyphones. This article reviews reports on the use of honey in the treatment of human disorders, which are supported by clinical tests and published in medical journals. First, the composition of honey is described, followed by its physiological and nutritional effects. Finally, the influence of honey on gastroenterology and cardiovascular effects is illustrated.

Keywords

Honey Natural products Gastroenteritis Gastric ulcer Wound healing Antibacterial activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crane E (1983) The archaeology of beekeeping. Gerald Duckworth & Co, LondonGoogle Scholar
  2. 2.
    Crane E (1975) History of honey. In: Crane E (ed) Honey, a comprehensive survey. William Heinemann, LondonGoogle Scholar
  3. 3.
    Jones R (2001) Honey and healing through the ages. In: Munn P, Jones R (eds) Honey and healing. International Bee Research Association IBRA, CardiffGoogle Scholar
  4. 4.
    Crane E (1999) The world history of beekeeping and honey hunting. Gerald Duckworth & Co, LondonGoogle Scholar
  5. 5.
    Allsop KA, Miller JB (1996) Honey revisited: a reappraisal of honey in pre-industrial diets. Br J Nutr 75:513–520CrossRefGoogle Scholar
  6. 6.
    Coulston AM (2000) Honey...how sweet it is! Nutr Today 35:96–100CrossRefGoogle Scholar
  7. 7.
    Bogdanov S, Jurendic T, Sieber R et al (2008) Honey for nutrition and health: a review. Am J Coll Nutr 27:677–689Google Scholar
  8. 8.
    Chow J (2002) Probiotics and prebiotics: a brief overview. J Ren Nutr 12:76–86CrossRefGoogle Scholar
  9. 9.
    Pérez, RA (2002) Analysis of volatiles from Spanish honeys by solid-phase microextraction and gas chromatography-mass spectrometry. J Agric Food Chem 50:2633–2637CrossRefGoogle Scholar
  10. 10.
    Terrab A, Gonzále MML, González AG et al (2003) Characterisation of Moroccan unifloral honeys using multivariate analysis. Eur Food Res Technol 218:88–95CrossRefGoogle Scholar
  11. 11.
    Martos I, Ferreres F, Yao L et al (2000) Flavonoids in monospecific Eucalyptus honeys from Australia. J Agric Food Chem 48:4744–4748CrossRefGoogle Scholar
  12. 12.
    Tomas-Barberán FA, Martos I, Ferreres F et al (2001) HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys. J Sci Food Agric 81:485–496CrossRefGoogle Scholar
  13. 13.
    Dimitrova B, Gevrenova R, Anklam E (2007) Analysis of phenolic acids in honeys of different floral origin by solid-phase extraction and high-performance liquid chromatography. Phytochem Anal 18:24–32CrossRefGoogle Scholar
  14. 14.
    Molan PC, Betts JA (2004) Clinical usage of honey as a wound dressing: an update. J Wound Care 13:353–356Google Scholar
  15. 15.
    Patzold R, Bruckner H (2006) Gas chromatographic detection of D-amino acids in natural and thermally treated bee honeys and studies on the mechanism of their formation as result of the Maillard reaction. Eur Food Res Technol 223:347–354CrossRefGoogle Scholar
  16. 16.
    Pérez AR, Iglesias MT, Pueyo E et al (2007) Amino acid composition and antioxidant capacity of Spanish honeys. J Agric Food Chem 55:360–365CrossRefGoogle Scholar
  17. 17.
    González-Paramás AM, Gómez-Bárez JA, Cordón Marcos C et al (2006) HPLC-fluorimetric method for analysis of amino acids in products of the hive (honey and bee-pollen). Food Chem 95:148–156CrossRefGoogle Scholar
  18. 18.
    Heitkamp K, Busch-Stockfisch M (1986) Pro und Kontra Honig-Sind Aussagen zur Wirkung des Honigs “wissenschaftlich hinreichend gesichert”? Z Lebensm Unters Forsch 182:279–286CrossRefGoogle Scholar
  19. 19.
    Persano-Oddo L, Piro R (2004) Main European unifloral honeys: descriptive sheets. Apidologie 35:38–81CrossRefGoogle Scholar
  20. 20.
    Jeffrey AE, Echazarreta CM (1996) Medical uses of honey. Rev Biomed 7:43–49Google Scholar
  21. 21.
    Moreira RFA, De Maria CAB (2001) Glícidos no mel. Quim Nova 24:516–525Google Scholar
  22. 22.
    Azeredo LC, Azeredo MAA, Souza SR, Dutra VML (2003) Protein contents and physicochemical properties in honey samples of Apis mellifera of different floral origins. Food Chem 80:249–254CrossRefGoogle Scholar
  23. 23.
    Iglesias MT, de Lorenzo C, Polo MC et al (2004) Usefulness of amino acids composition to discriminate between honeydew and floral honeys. Application to honeys from a small geographic area. J Food Agric Chem 52:84–89CrossRefGoogle Scholar
  24. 24.
    Hermosín I, Chicón RM, Cabezudo MD (2003) Free amino acid composition and botanical origin of honey. Food Chem 83:263–268CrossRefGoogle Scholar
  25. 25.
    Bengsch E (1992) Connaissance du miel. Des oligo-éléments pour la santé. Rev franc apicult 569:383–386Google Scholar
  26. 26.
    Conti ME (2000) Lazio region (central Italy) honeys: a survey of mineral content and typical quality parameters. Food Control 11:459–463CrossRefGoogle Scholar
  27. 27.
    Stocker A, Schramel P, Kettrup A, Bengsch E (2005) Trace and mineral elements in royal jelly and homeostatic effects. J Trace Elem Med Biol 19:183–189CrossRefGoogle Scholar
  28. 28.
    Careri M, Mangia A, Barbieri G et al (1994) Sensory property relationship to chemical data italian-type dry-cured ham. J Food Sci 27:491–495Google Scholar
  29. 29.
    Anklam E, Radovic BS (2001) Suitable analytical methods for determining the origin of European honey. Am Lab 7:60–64Google Scholar
  30. 30.
    Bogdanov S, Ruoff K, Persano Oddo L (2007) Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie 35:4–17CrossRefGoogle Scholar
  31. 31.
    Cuevas-Glory LF, Pino JA, Santiago LS, Sauri-Duch E (2007) A review of volatile analytical methods for determining the botanical origin of honey. Food Chem 103:1032–1043CrossRefGoogle Scholar
  32. 32.
    Alissandrakis E, Tarantilis PA, Harizanis PC, Polissiou M (2005) Evaluation of four isolation techniques for honey aroma compounds. J Sci Food Agric 85:91–97CrossRefGoogle Scholar
  33. 33.
    Alissandrakis E, Tarantalis PA, Harizanis PC, Polissiou M (2007) Aroma investigation of unifloral Greek citrus honey using solidphase microextraction coupled to gas chromatographic-mass spectrometric analysis. Food Chem 100:396–404CrossRefGoogle Scholar
  34. 34.
    Piasenzotto L, Gracco L, Conte L (2003) Solid phase microextraction (SPME) applied to honey quality control. J Sci Food Agric 83:1037–1044CrossRefGoogle Scholar
  35. 35.
    Martos I, Ferreres F, Tomás-Barberán FA (2000) Identification of flavonoid markers for the botanical origin of Eucalyptus honey. J Food Agric Chem 48:1498–1502CrossRefGoogle Scholar
  36. 36.
    Tomas-Barberán FA, Martos I, Ferreres F et al (2001) HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys. J Sci Food Agric 81:485–496CrossRefGoogle Scholar
  37. 37.
    Amiot MJ, Aubert S, Gonnet M, Tacchini M (1989) Les composés phénoliques des miels: étude préliminaire sur l’identification et la quantification par familles. Apidologie 20:115–125CrossRefGoogle Scholar
  38. 38.
    Ferreres F, Tomas-Barberan FA, Gil MI, Tomas-Lorente F (1991) An HPLC technique for flavonoid analysis in honey. J Sci Food Agric 56:49–56CrossRefGoogle Scholar
  39. 39.
    Gil MI, Ferreres F, Ortiz A, Subra E, Tomas-Barberan FA (1995) Plant phenolic metabolites and floral origin of rosemary honey. J Agric Food Chem 43:2833–2838CrossRefGoogle Scholar
  40. 40.
    Vela L, Lorenzo C, Pérez RA (2007) Antioxidant capacity of Spanish honeys and its correlation with polyphenol content and other physicochemical properties. J Sci Food Agric 87:1069–1075CrossRefGoogle Scholar
  41. 41.
    Truchado P, Ferreres F, Bortolotti L et al (2008) Nectar flavonol rhamnosides are markers of acacia (Robinia pseudacacia) honey. J Food Agric Chem 56:8815–8824CrossRefGoogle Scholar
  42. 42.
    Michalkiewicz A, Biesaga M, Pyrzynska K (2008) Solid-phase extraction procedure for determination of phenolic acids and some flavonols in honey. J Chrom A 1187:18–24CrossRefGoogle Scholar
  43. 43.
    Estevinho L, Pereira AP, Moreira L et al (2008) Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem Toxicol 46:3774–3779CrossRefGoogle Scholar
  44. 44.
    Ferreres F, Tomas-Barberan FA, Gil MI, Tomas-Lorente F (1991) An HPLC technique for flavonoid analysis in honey. J Sci Food Agric 56:49–56CrossRefGoogle Scholar
  45. 45.
    Gil MI, Ferreres F, Ortiz A et al (1995) Plant phenolic metabolites and floral origin of rosemary honey. J Agric Food Chem 43:2833–2838CrossRefGoogle Scholar
  46. 46.
    Tomás-Barberán FA, Martos I, Ferreres F et al (2001) HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys. J Sci Food Agric 81:485–496CrossRefGoogle Scholar
  47. 47.
    Bogdanov S (1997) Nature and origin of the antibacterial substances in honey. Lebensm-Wiss Technol 30:748–753CrossRefGoogle Scholar
  48. 48.
    Weston RJ, Mitchell KR, Allen KL (1999) Antibacterial phenolic components of New Zealand manuka honey. Food Chem 64:295–301CrossRefGoogle Scholar
  49. 49.
    Taormina PJ, Niemira BA, Beuchat LR (2001) Inhibitory activity of honey against food-borne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. Int J Food Microbiol 69:217–225CrossRefGoogle Scholar
  50. 50.
    Allen KL, Molan PC, Reid GM (1991) A survey of the antibacterial activity of some New Zealand honeys. J Pharm Pharmacol 43:817–822Google Scholar
  51. 51.
    Wahdan HAL (1998) Causes of the antimicrobial activity of honey. Infection 26:26CrossRefGoogle Scholar
  52. 52.
    Weston RJ, Brocklebank LK, Lu Y (2000) Identification and quantitative levels of antibacterial components of some New Zealand honeys. Food Chem 70:427–435CrossRefGoogle Scholar
  53. 53.
    Fahey JW, Stephenson KK (2002) Pinostrobin from honey and Thai ginger (Boesenbergia pandurata): A potent flavonoid inducer of mammalian phase 2 chemoprotective and antioxidant enzymes. J Agric Food Chem 50:7472–7476CrossRefGoogle Scholar
  54. 54.
    Zeina B, Zohra BI, al Assad S (1997) The effects of honey on Leishmania parasites: an in vitro study. Trop Doct 27[Suppl 1]:36–38Google Scholar
  55. 55.
    Kilicoglu B, Kismet K, Koru O et al (2006) The scolicidal effects of honey. Adv Ther 23:1077–1083CrossRefGoogle Scholar
  56. 56.
    Russell, KM, Molan PC, Wilkins AL, Holland PT (1990) Identification of some antibacterial constituents of New Zealand manuka honey. J Agric Food Chem 38:10–13CrossRefGoogle Scholar
  57. 57.
    Gheldof N, Engeseth NJ (2002) Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum samples. J Agric Food Chem 50:3050–3055CrossRefGoogle Scholar
  58. 58.
    Gheldof N, Wang XH, Engeseth NJ (2003) Buckwheat honey increases serum antioxidant capacity in humans. J Agric Food Chem 51:1500–1505CrossRefGoogle Scholar
  59. 59.
    Beretta G, Granata P, Ferrero M, Orioli M, Facino RM (2005) Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal Chim Acta 533:185–191CrossRefGoogle Scholar
  60. 60.
    D’Arcy BR (2005) Antioxidants in Australian floral honeys — Identification of health enhancing nutrient components. RIRDC Publication No 05/040Google Scholar
  61. 61.
    Gheldof N, Wang XH, Engeseth NJ (2002) Identification and quantification of antioxidant components of honeys from various floral sources. J Agric Food Chem 50:5870–5877CrossRefGoogle Scholar
  62. 62.
    Frankel S, Robinson GE, Berenbaum MR (1998) Antioxidant capacity and correlated characteristics of 14 unifloral honeys. J Apic Res 37:27–31Google Scholar
  63. 63.
    Aljadi AM, Kamaruddin MY (2004) Evaluation of the phenolic contents and antioxidant capacities of two Malaysian floral honeys. Food Chem 85:513–518CrossRefGoogle Scholar
  64. 64.
    Inoue K, Murayarna S, Seshimo F et al (2005) Identification of phenolic compound in manuka honey as specific superoxide anion radical scavenger using electron spin resonance (ESR) and liquid chromatography with coulometric array detection. J Sci Food Agric 85:872–878CrossRefGoogle Scholar
  65. 65.
    Blasa M, Candiracci M, Accorsi A (2006) Raw Millefiori honey is packed full of antioxidants. Food Chem 97:217–222CrossRefGoogle Scholar
  66. 66.
    Nagai T, Inoue R, Kanamori N et al (2006) Characterization of honey from different floral sources. Its functional properties and effects of honey species on storage of meat. Food Chem 97:256–262CrossRefGoogle Scholar
  67. 67.
    Al-Waili NS (2003) Effects of daily consumption of honey solution on hematological indices and blood levels of minerals and enzymes in normal individuals. J Med Food 6:135–140CrossRefGoogle Scholar
  68. 68.
    Meda A, Lamien CE, Romito M et al (2005) Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem 91:571–577CrossRefGoogle Scholar
  69. 69.
    McKibben J, Engeseth NJ (2002) Honey as a protective agent against lipid oxidation in ground turkey. J. Agric Food Chem 50:592–595CrossRefGoogle Scholar
  70. 70.
    Aljadi AM, Kamaruddin MY (2004) Evaluation of the phenolic contents and antioxidant capacities of two Malaysian floral honeys. Food Chem 85:513–518CrossRefGoogle Scholar
  71. 71.
    Bertoncelj J, Dobersěk U, Jamnik M, Golob T (2007) Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem 105:822–828CrossRefGoogle Scholar
  72. 72.
    Baltrušaitė V, Rimantas P, Čksterytė V (2007) Radical scavenging activity of different floral origin honey and beebread phenolic extracts. Food Chem 101:502–514CrossRefGoogle Scholar
  73. 73.
    Schramm DD, Karim M, Schrader HR et al (2003) Honey with high levels of antioxidants can provide protection to healthy human subjects. J Agric Food Chem 51:1732–1735CrossRefGoogle Scholar
  74. 74.
    Beretta G, Orioli M, Facino RM (2007) Antioxidant and radical scavenging activity of honey in endothelial cell culture (EA.hy926). Planta Med 73:1182–1189.CrossRefGoogle Scholar
  75. 75.
    Molan PC (2001) Potential of honey in the treatment of wounds and burns. Am J Clin Dermatol 2:9–13CrossRefGoogle Scholar
  76. 76.
    Hamzaoglu I, Saribeyoglu K, Durak H et al (2000) Protective covering of surgical wounds with honey impedes tumor implantation. Arch Surg 135–142Google Scholar
  77. 77.
    Mobarok Ali ATM, Al-Swayeh AO (1997) Natural honey prevents ethanol.induced increased vascular permeability changes in the rat stomach. J Ethnopharmacol 55:231–239CrossRefGoogle Scholar
  78. 78.
    Bang LM, Buntting C, Molan P (2003) The effect of dilution on the rate of hydrogen peroxide production in honey and its implications for wound healing. J Altern Compl Med 9:267–273CrossRefGoogle Scholar
  79. 79.
    Lopez-Lazaro M (2006) Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett 252:1–8CrossRefGoogle Scholar
  80. 80.
    Facino RM (2001) Honey in tumor surgery. Arch Surg 136:600CrossRefGoogle Scholar
  81. 81.
    Michaluart P, Masferrer JL, Carothers AM et al (1999) Inhibitory effects of caffeic acid phenethyl esther on the activity and expression of cyclooxygenase-2 in human oral epithelial cell and in rat model of inflammation. Cancer Res 59:2347–2352Google Scholar
  82. 82.
    Greten FR, Eckmann L, Greten TF et al (2004) IKK links inflammation and tumorigenesis in mouse model of colitis associated cancer. Cell 118:285–296CrossRefGoogle Scholar
  83. 83.
    Wang XH, Andrae L, Engeseth NJ (2002) Antimutagenic effect of various honeys and sugars against Trp-p-1. J Agric Food Chem 50:6923–6928CrossRefGoogle Scholar
  84. 84.
    Orsolic N, Basic I (2004) Honey as a cancer-preventive agent. Periodicum Biolog 106:397–401Google Scholar
  85. 85.
    Swellam T, Miyanaga N, Onozawa M et al (2003) Antineoplastic activity of honey in an experimental bladder cancer implantation model: in vivo and in vitro studies. Int J Urol 10:213–219CrossRefGoogle Scholar
  86. 86.
    Al-Waili NS, Boni NS (2003) Natural honey lowers plasma prostaglandin concentrations in normal individuals. J Med Food 6:129–133CrossRefGoogle Scholar
  87. 87.
    Bilsel Y, Bugra D, Yamaner S et al (2002) Could honey have a place in colitis therapy? Effects of honey, prednisolone, and disulfiram on inflammation, nitric oxide, and free radical formation. Dig Surg 19:306–311CrossRefGoogle Scholar
  88. 88.
    Jeddar A, Kharsany A, Ramsaroop UG et al (1985) The antibacterial action of honey: an in vitro study. S Afr Med J 67:257–258Google Scholar
  89. 89.
    Osato MS, Reddy SG, Graham DY (1999) Osmotic effect of honey on growth and viability of Helicobacter pylori. Dig Dis Sci 44:462–464CrossRefGoogle Scholar
  90. 90.
    Ali AT, Chowdhury MN, Al-Humayyd MS (1999) Inhibitory effect of natural honey on Helicobacter pylori. Tropical Gastroenterol 12:139–143Google Scholar
  91. 91.
    Salem SN (1981) Treatment of gastroenteritis by the use of honey. Islam Med 1:358–362Google Scholar
  92. 92.
    Haffejee IE, Moosa A (1985) Honey in the treatment of infantile gastroenteritis. Br Med J 290:1866–1867CrossRefGoogle Scholar
  93. 93.
    World Health Organisation (1976) Treatment and prevention of dehydration in diarrhoeal diseases. A guide for use at the primary level. WHO, Geneva, pp 1–13Google Scholar
  94. 94.
    Chatterjee A, Mahalanabis D, Jalan KN (1978) Oral rehydration in infantile diarrhea. Controlled trial of a low sodium glucose electrolyte solution. Arch Dis Child 53:284–289CrossRefGoogle Scholar
  95. 95.
    Sanz ML, Polemis N, Morales V et al (2005) In vitro investigation into the potential prebiotic activity of honey oligosaccharides. J Agric Food Chem 53:2914–2921CrossRefGoogle Scholar
  96. 96.
    Yun YW (1996) Fructooligosaccharides: occurrence, preparation and application. Enzyme Microb Technol 19:107–117CrossRefGoogle Scholar
  97. 97.
    Kajiwara S, Gandhi H, Ustunol Z (2002) Effect of honey on the growth of and acid production by human intestinal Bifidobacterium spp: an in vitro comparison with commercial oligosaccharides and inulin. J Food Prot 65:214–218Google Scholar
  98. 98.
    Yaghoobi N, Al-Waili N, Ghayour-Mobarhan M et al (2008) Natural honey and cardiovascular risk factors; effects on blood glucose, cholesterol, triacylglycerole, CRP, and body weight compared with sucrose. Sci World J 20:463–9Google Scholar
  99. 99.
    Al-Waili NS (2004) Natural honey lowers plasma glucose, Creactive protein, homocysteine, and blood lipids in healthy, diabetic, and hyperlipidemic subjects: comparison with dextrose and sucrose. J Med Food 7:100–107CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2009

Authors and Affiliations

  • Jose Miguel Alvarez-Suarez
    • 1
  • Sara Tulipani
    • 1
  • Stefania Romandini
    • 1
  • Enrico Bertoli
    • 1
  • Maurizio Battino
    • 1
  1. 1.Department of Biochemistry, Biology & Genetics Faculty of MedicineUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations