Skip to main content
Log in

A Unified Analysis of Exact Traveling Wave Solutions for the Fractional-Order and Integer-Order Biswas–Milovic Equation: Via Bifurcation Theory of Dynamical System

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper presents a unified method to investigate exact traveling wave solutions of the nonlinear fractional-order and integer-order partial differential equations. We use the conformable fractional derivatives. The method is based on the bifurcation theory of planar dynamical systems. To show the effectiveness of this method, we choose Biswas–Milovic (for short, BM) equation with conformable derivative as an application. Also comparison is presented for the exact traveling wave solutions between the integer-order BM equation and fractional-order BM equation. It is believed that this approach can be extended to other nonlinear fractional-order partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Biswas, A., Milovic, D.: Bright and dark solitons of the generalized nonlinear Schröndinger equation. Commun. Nonlinear Sci. Numer. Simul. 15, 1473–1484 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Eslami, M., Mirzazadeh, M., Neirameh, A.: New exact wave solutions for Hirota equation. Pramana 84, 3–8 (2015)

    Google Scholar 

  3. Eslami, M., Neirameh, A.: New exact solutions for higher order nonlinear Schrödinger equation in optical fibers. Opt. Quant. Electron. 50, 47 (2018)

    Google Scholar 

  4. Eslami, M., Neyrame, A., Ebrahimi, M.: Explicit solutions of nonlinear \((2+1)\)-dimensional dispersive long wave equation. J. King Saud Univ. Sci. 24, 69–71 (2012)

    Google Scholar 

  5. Kara, A.H., Biswas, A., Zhou, Q., Moraru, L., Moshokoa, S.P., Belic, M.: Conservation laws for optical solitons with Chen–Lee–Liu equation. Optik 174, 195–198 (2018)

    Google Scholar 

  6. Li, B., Zhao, J., Triki, H., Ekici, M., Mirzazadeh, M., Zhou, Q., Liu, W.: Soliton interactions for optical switching systems with symbolic computation. Optik 175, 177–180 (2018)

    Google Scholar 

  7. Liu, J.G., Eslami, M., Rezazadeh, H., Mirzazadeh, M.: Rational solutions and lump dolutions to a non-isospectral and generalized variable-coefficient Kadomtsev–Petviashvili equation. Nonlinear Dyn. 95, 1027–1033 (2019)

    Google Scholar 

  8. Nazarzadeh, A., Eslami, M., Mirzazadeh, M.: Exact solutions of some nonlinear partial differential equations using functional variable method. Pramana 81, 225–236 (2013)

    Google Scholar 

  9. Zubair, A., Raza, N., Mirzazadeh, M., Liu, W., Zhou, Q.: Analytic study on optical solitons in parity-time-symmetric mixed linear and nonlinear modulation lattices with non-Kerr nonlinearities. Optik 173, 249–262 (2018)

    Google Scholar 

  10. Liu, W.J., Liu, M.L., Lin, S., Liu, J.C., Lei, M., Wu, H., Dai, C.Q., Wei, Z.Y.: Synthesis of high quality silver nanowires and their applications in ultrafast photonics. Opt. Express. 27, 16440–16448 (2019)

    Google Scholar 

  11. Liu, W.J., Liu, M.L., Liu, B., Quhe, R.G., Lei, M., Fang, S.B., Teng, H., Wei, Z.Y.: Nonlinear optical properties of \(MoS_{2}-WS_{2}\) heterostructure in fiber lasers. Opt. Express. 27, 6689–6699 (2019)

    Google Scholar 

  12. Liu, W., Liu, M., Wang, X., Shen, T., Chang, G., Lei, M., Deng, H., Wei, Z., Wei, Z.: Thickness-dependent ultrafast photonics of \(SnS_{2}\) nanolayers for optimizing fiber lasers. ACS Appl. Nano Mater. 2, 2697–2705 (2019)

    Google Scholar 

  13. Liu, M., Liu, W., Wei, Z.: \(MoTe_{2}\) saturable absorber with high modulation depth for erbium-doped fiber laser. J. Lightwave Technol. 37, 3100–3105 (2019)

    Google Scholar 

  14. Liu, M., Ouyang, Y., Hou, H., Liu, W., Wei, Z.: Q-switched fiber laser operating at 1.5 \(\mu \)m based on \(WTe_{2}\). Chin. Opt. Lett. 17, 020006 (2019)

    Google Scholar 

  15. Podlubny, I.: Fractional Differential Equations. Academic, San Diego (1999)

    MATH  Google Scholar 

  16. Wu, Q., Huang, J.: Fractional Differential Equations. Qinghua University, Beijing (2015)

    Google Scholar 

  17. Ahmadiana, S., Darvishi, M.: A new fractional Biswas–Milovic model with its periodic soliton solutions. Optik 127, 7694–7703 (2016)

    Google Scholar 

  18. Eslami, M.: Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations. Appl. Math. Comput. 285, 141–148 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo 53, 475–485 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Khodadad, F.S., Nazzari, F., Eslami, M., Rezazadeh, H.: Soliton solutions of the conformable fractional Zakharov–Kuznetsov equation with dual-power law nonlinearity. Opt. Quant. Electron. 49, 384 (2017)

    Google Scholar 

  21. Rezazadeh, H., Korkmaz, A., Eslami, M., Vahidi, J., Asghari, R.: Traveling wave solution of conformable fractional generalized reaction Duffing model by generalized projective Riccati equation method. Opt. Quant. Electron. 50, 150 (2018)

    Google Scholar 

  22. Liu, C.: Counterexamples on Jumarie’s two basic fractional calculus formulae. Commun. Nonl. Sci. Numer. Simulat. 22, 92–94 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Jumarie, G.: Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51, 1367–1376 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Khalil, R., Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Foroutana, M., Kumarb, D., Manafiand, J., Hoquee, A.: New explicit soliton and other solutions for the conformable fractional Biswas–Milovic equation with Kerr and parabolic nonlinearity through an integration scheme. Optik 170, 190–202 (2018)

    Google Scholar 

  26. Jafari, H., Sooraki, A., Khalique, C.M.: Dark solitons of the Biswas–Milovic equation by the first integral method. Optik 124, 3929–3932 (2013)

    Google Scholar 

  27. Mirzazadeh, M., Arnous, A.H.: Exact solution of Biswas–Milovic equation using new efficient method. Electron. J. Math. Anal. Appl. 3, 139–146 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Ma, W.X., Huang, T.W., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82, 065003 (2010)

    MATH  Google Scholar 

  29. Eslami, M., Mirzazadeh, M.: Optical solitons with Biswas–Milovic equation for power law and dual-power law nonlinearities. Nonlinear Dyn. 83, 731–738 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Najafi, M., Arbabi, S.: Dark soliton and periodic wave solutions of the Biswas–Milovic equation. Optik 127, 2679–2682 (2016)

    Google Scholar 

  31. Manafian, J.: On the complex structures of the Biswas–Milovic equation for power, parabolic and dual parabolic law nonlinearities. Eur. Phys. J. Plus 130, 255 (2015)

    Google Scholar 

  32. Manafian, J., Lakestani, M.: Optical solitons with Biswas–Milovic equation for Kerr law nonlinearity. Eur. Phys. J. Plus 130, 61 (2015)

    Google Scholar 

  33. Manafian, J., Lakestani, M.: Application of \(\tan (phi/2)\)-expansion method for solving the Biswas–Milovic equation for Kerr law nonlinearity. Optik 127, 2040–2054 (2016)

    Google Scholar 

  34. Zhou, Q., Ekici, M., Sonmezoglu, A., Mirzazadeh, M., Eslami, M.: Analytical study of solitons to Biswas–Milovic model in nonlinear optics. J. Mod. Opt. 63, 2131–2137 (2016)

    Google Scholar 

  35. Zhou, Q., Ekici, M., Sonmezoglu, A., Mirzazadeh, M.: Optical solitons with Biswas–Milovic equation by extended \(G^{\prime }/G\)-expansion method. Optik 127, 6277–6290 (2016)

    MATH  Google Scholar 

  36. Wang, M.L., Li, X.Z., Zhang, J.L.: The \(G^{\prime }/G\)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    MathSciNet  Google Scholar 

  37. Biswas, A., Mirzazadeh, M., Eslami, M.: Dispersive dark optical soliton with Schödinger–Hirota equation by \(G^{\prime }/G\)-expansion approach in power law medium. Optik 125, 4215–4218 (2014)

    Google Scholar 

  38. Mirzazadeh, M., Eslami, M., Biswas, A.: Soliton solutions of the generalized Klein–Gordon equation by using \((\frac{G^{\prime }}{G})\)-expansion method. Comput. Appl. Math. 33, 831–839 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Eslami, M.: Trial solution technique to chiral nonlinear Schrodinger’s equation in \((1+2)\)-dimensions. Nonliear Dyn. 85, 813–816 (2016)

    MathSciNet  Google Scholar 

  40. Zhou, Q., Ekici, M., Sonmezoglu, A., Mirzazadeh, M., Eslami, M.: Optical solitons with Biswas–Milovic equation by extended trial equation method. Nonlinear Dyn. 84, 1883–1900 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Zhou, Q.: Optical solitons for Biswas–Milovic model with Kerr law and parabolic law nonlinearities. Nonlinear Dyn. 84, 677–681 (2016)

    MathSciNet  Google Scholar 

  42. Kumar, S.: Invariant solutions of Biswas–Milovic equation. Nonlinear Dyn. 87(2), 1153–1157 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Inc, M., Aliyu, A.I., Yusuf, A., Baleanu, D.: Optical solitons for Biswas–Milovic Model in nonlinear optics by Sine-Gordon equation method. Optik 157, 267–274 (2018)

    Google Scholar 

  44. Rizvi, S.T.R., Bashir, S., Ali, K., Ahmad, S.: Jacobian elliptic periodic traveling wave solutions for Biswas–Milovic equation. Optik 131, 582–587 (2017)

    Google Scholar 

  45. Raza, N., Abdullah, M., Butt, A.R.: Analytical soliton solutions of Biswas–Milovic equation in Kerr and non-Kerr law media. Optik 157, 993–1002 (2018)

    Google Scholar 

  46. Arshed, S., Biswas, A., Zhou, Q., Moshokoa, S.P., Belic, M.: Optical soliton perturbation with differential group delay and parabolic law nonlinearity using \(exp(-\phi (\xi ))\)-expansion method. Optik 172, 826–831 (2018)

    Google Scholar 

  47. Yu, J., Sun, Y.: Exact traveling wave solutions to the \((2+1)\)-dimensional Biswas–Milovic equations. Optik 149, 378–383 (2017)

    Google Scholar 

  48. Raza, N., Javid, A.: Optical dark and singular solitons to the Biswas–Milovic equation in nonlinear optics with spatio-temporal dispersion. Optik 158, 1049–1057 (2018)

    Google Scholar 

  49. Li, J.: Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solutions. Science, Beijing (2013)

    Google Scholar 

  50. Li, J., Chen, G.: On a class of singular nonlinear traveling wave equations. Int. J. Bifurcat. Chaos 17, 4049–4065 (2007)

    MathSciNet  MATH  Google Scholar 

  51. Song, Y., Tang, X.: Stability, steady-state bifurcations, and turing patterns in a predator–prey model with herd behavior and prey-taxis. Stud. Appl. Math. 139(3), 371–404 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Zhang, B., Xia, Y., Zhu, W., Bai, Y.: Explicit exact traveling wave solutions and bifurcations of the generalized combined double sinh–cosh-Gordon equation. Appl. Math. Comput. 363, 124576 (2019). https://doi.org/10.1016/j.amc.2019.124576

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhu, W., Xia, Y., Zhang, B., Bai, Y.: Exact traveling wave solutions and bifurcations of the time fractional differential equations with applications. Int. J. Bifur. Chaos 29(3), 1950041 (2019). https://doi.org/10.1142/S021812741950041X

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhu, W., Li, J.: Exact traveling wave solutions and birfurcations of the Biswas–Milovic equation. Nonlinear Dyn. 84, 1973–1987 (2016)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghui Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was jointly supported by the National Natural Science Foundation of China under Grant (Nos. 11671176, 11931016, 11901547, 11871251), Natural Science Foundation of Zhejiang Province under Grant (No. LY20A010016), and start-up fund of Huaqiao University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Zhu, W., Xia, Y. et al. A Unified Analysis of Exact Traveling Wave Solutions for the Fractional-Order and Integer-Order Biswas–Milovic Equation: Via Bifurcation Theory of Dynamical System. Qual. Theory Dyn. Syst. 19, 11 (2020). https://doi.org/10.1007/s12346-020-00352-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-020-00352-x

Keywords

Navigation